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Introduction.

In the quantum theory of line spectra it is assumed that the laws of electro

dynamics cannot be applied to atomic systems, and the assumption is made that 
an atomic system can exist without emitting radiation in a number of states, which 
are called the “stationary states’’ of the system, and that a process of emission or 
absorption of energy can only take place by a complete transition between two 
such states. Further it is assumed that the radiation emitted or absorbed during 
such a transition is unifrequentic, and that its frequency is given by

where E' and E" are the values of the energy in the two states, and where h is 
Planck s constant. As well known Bohr was able, on the basis of these assump
tions, to account in a convincing way for the frequencies of the lines of the series 
spectrum of hydrogen and for some main features of the series spectra of other 
elements. In the course of the last years the quantum theory of line spectra has 
been developed considerably, due to the work of Sommerfeld, Epstein, Schwarz
schild and others, who, by extending Bohr’s original theory, were able to explain, 
as regards the frequencies of the components, the characteristic fine structure of 
the hydrogen lines and the effect which strong external electric or magnetic fields 
have on these lines. Now Bohr1) has shown in a recent paper, which contains a 
general exposure of the principles of the quantum theory of line spectra, that it is 
not only possible to get information as regards the frequencies of spectral lines, 
but that al the present state of the theory we are also able to draw some con
clusions regarding the polarisation and intensities with which these lines 
appear, by considering the amplitudes of the harmonic vibrations in which the 
motion of the particles in an atomic system may be resolved. On professor Bohr’s 
proposal I have undertaken in the present paper to treat in detail the application 
ol his ideas to the problem of the intensity of spectral lines in the special case of

x) N. Bohr, On the Quantum Theory of Line Spectra. D. Kgl. Danske Vidensk. Selsk. Skr, natur- 
vidensk. og mathem. Afd., 8. Række IV, 1, 1918. This paper will in the following be referred to as: 
N. Bohr, loc. cit. 
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the fine structure and in that of the Stark effect of the hydrogen lines, and to 
compare the result of the calculations with the observations.

The paper is divided in two Parts.
Part I deals with the problem of the determination of the values of the ampli

tudes of the harmonic vibrations in which the motion of certain mechanical systems 
may be resolved, and is divided in four chapters.

In § 1 a short account will be given of the theory of mechanical systems for 
which the Hamilton-Jacobi partial differential equation may be solved by means 
of separation of variables, and it will be shown how it is possible to reduce the 
calculation of the amplitudes of the harmonic vibrations, in which the motion of 
these systems may be resolved, to the evaluation of simple definite integrals.

In § 2 the method exposed in § 1 will be applied to the model of a hydrogen 
atom which is uninfluenced by external forces, assuming that the motion is governed 
by the laws of relativistic mechanics.

In § 3 the same method will be applied lo the model of a hydrogen atom, 
which is subject to the influence of an external homogeneous electric field of force, 
the intensity of which is so large that it is possible with a high degree of approx
imation to determine the motion by means of ordinary Newtonian mechanics.

In § 4 the perturbing influence is considered which a very weak homogeneous 
electric field of force will have on the motion of the system considered in § 2.

Part II deals with the application of the calculations given in Part I lo the 
problem of the intensities of spectral lines, and is divided in four chapters.

§ 5 contains, besides a brief exposure of the theory of stationary states of 
systems which allow of separation of variables, an account of Bohr’s theory of the 
connection between the polarisation and intensities of spectral lines emitted by an 
atomic system and the amplitudes of the harmonic vibrations in which the motion 
of such a system may be resolved.

In § 6 a discussion is given of the application of the theory lo the relative 
intensities of the components in which the hydrogen lines are split up in case of 
the Stark effect, on the basis of the formulae deduced in § 3.

§ 7 contains a discussion of the relative intensities with which the components 
of the fine structure of the hydrogen lines appear, based on the formulae deduced 
in § 2 and § 4.

In § 8 a brief discussion will be given of certain questions which stand in 
connection with the application of the theory lo the problem of the Zeeman effect 
of the hydrogen lines.

Finally I wish to express my best thanks to professor N. Bohr, the creator 
of the beautiful theory underlying the present paper, for his kind interest and 
encouragement during the achievement of the work.



Part I.
Examination of the trigonometric series representing the 

motion of the electron in the hydrogen atom.

S 1. General method applicable to conditionally periodic systems.
Consider a mechanical system of s degrees of freedom, the equations of motion 

of which are given by the set of canonical equations

(2)

where qlf ... qs is a set of generalised coordinates by means of which the positions 
in space of the particles of which the system consists are uniquely determined, 
while ... ps are the canonically conjugated momenta, and where E is the energy 
of the system, which is assumed to be a function of the p's and </'s only. The so 

differential equation is then obtained by writing 
of the q's, and by putting F, considered as a fúñe
lo a constant a* ;

called Hamilton-Jacobi partial 
p, = where S is a function

dJH &S
lion of the q’s and ’s, equal1 dq 1

A complete solution of this equation will contain, besides an additional constant C, 
s — 1 other integration constants a2, .... as. Now it may happen that, for a suitable 
choice of orthogonal generalised positional coordinates q}, . . . . qs, it is possible to 
write a complete solution of equation (3) in the form

S = 2\S\ (qA- ; «J,.... as) ' C, (4)

where depends on the <z’s and on qa only. If this is the case it is said that the 
equation (3) allows of “separation of variables’’ for the special choice of coordinates 
under consideration, or briefly, thal the system allows of separation of variables. 
For such a system , as seen from (4), will depend on the corresponding í/a- only; 
moreover remembering that in Newtonian, as well as in relativistic mechanics, E 
contains the p's in the form of a sum of squares, must necessarily be the square 
root of a one-valued function of q¡z. Hence, denoting Ibis one-valued function by 
Fa-, we see that S may be written in the form
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(5)

If the «’s satisfy the condition that every function Fk(qk) possesses at least 
two successive finite real simple roots qk and , between which the value of the 
function is positive, the function S will, considered as a function of the q’s, possess 
s moduli of periodicity, defined by

Ik = \v'Fk{qic-, «!, • ■ ■ «s) dqk, (k = 1, . . . s) (6)

where the integration is taken once up and down between qk and qk. It is clear 
that the quantities I thus defined are continuous functions of the «’s in the region 
where the «’s satisfy the just mentioned condition, and that generally the «’s may 
reversely be expressed as functions of the I s. Introducing these expressions for the 
«’s in (5), we obtain an expression for S as a function of the <7’s and of its moduli 
of periodicity Z15 . . . Zs ;

1

/s) ■ - Isi dqk.

Let us now define a transformation of variables

(7)

(8)

which may be considered as transforming the variables q1, . .. qs, px, . . . ps, which 
originally described the positions and velocities of all particles of the system at 
any moment, into the variables Ir, ... Is, iv} ... ws. It is easily seen from the 
periodicity properties of S that ivk, considered as a function of the q’s and /’s, will 
increase by 1 if qk continuously oscillates once up and down between its limits 
qk and qk and returns to its original value; while if one of the other g’s performs 
a similar oscillation between its limits, ivk will return to its original value, brom 
this we see that the q’s, and also the p’s, considered as functions of the w’s and 
the Z’s, are one-valued functions of these variables, which are periodic in every of 
the ip’s with period 1, i. e. they assume their original values if the w’s increase by 
arbitrary integers. The q’s may therefore be expanded in an s-douhle Fourier series 
of the form

<lk V M
T1,

i (T1 Wi + ... Ts. tvs ) (9)

where the summation is to be extended over all positive and negative entire values 
of the t’s, and where the C’s depend on the Z’s only. Similar expansions will hold 
for the p’s.
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Now, according to a well known theorem of Jacobi, the transformation (8) 
leaves the canonical form of the equations of motion unaltered, i. e. expressing by 
means of (8) E as a function of the /’s and ip’s, the variations of the latter quan-
tifies with the time are given by

dlk 8 E d wk 8E (k = !,....<?) (10)dt 8wk’ dt 8

Now E is, according to (3), equal to <z1, and consequently a function of the /’s 
only. The solution of the equations (10) is therefore immediately obtained by putting 

4 = constant, Wk = <vkt8k,
8E

íük “ 8Ik’ (k = 1, ... s) (H)

where the J’s are a set of arbitrary constants, while the w’s obviously depend on 
the constants I only. We thus see that there exists for the mechanical system under 
consideration a family of solutions in which each of the q’s oscillates between two 
limiting values depending on the constants /x, ... Is. It is easily seen that a>k repre
sents the mean number of oscillations which the coordinate qk performs between 
its limits in unit time, taken over a lime interval in which a very large number 
of such oscillations are performed. The variables iv are called “angle variables”; 
the quantities I, defined as the moduli of periodicity of the function S, are canoni
cally conjugated to the ip’s. Mechanical systems for which the motion may be 
described by a set of angle variables zpx, . . . w, and canonically conjugated /’s, 
possessing the properties just considered, are called “conditionally periodic”.

Since the q’s describe the positions of the particles in space uniquely, the 
displacement x of any of these particles in any direction in space will be a one
valued function of the q’s. Considered as a function of the /’s and ip’s, the displace
ment x will therefore, just as each of the q’s, be periodic in each of the ip’s with 
period 1, and may consequently also be expressed by a trigonometric series of 
the form

a? = 2’Ctj, Tse27t,’(Ti »i + •••’’s««),

where the coefficients C depend on the /’s only and where the summation is to 
be extended over all positive and negative entire values of the t’s. Introducing in 
this expression the values of the ip’s given by (11), we obtain for x, considered as 
a function of the time, an expression of the type

x = 2Crx. ... Tse27r¿{^,w»+---^<tíJí + cT1,...rs}, (12)

where the C’s and c’s are constants, showing that the motion of the particles of a 
conditionally periodic system may be resolved in a number of harmonic vibrations 
of frequencies •• rstysl the amplitudes of which depend on the quantities
A- only.

For the systems under consideration the number of the quantities to, which 
may be denoted as the “fundamental frequencies” characterising the motion, is
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generally equal to the number s of degrees of freedom. In special cases, however, 
this number may be less than s, viz. in such cases where, for all values of the Z’s, 
there exist one or more relations of the type

mk(ok = 0, (13)
i

where the m’s are a set of integers possessing no common divisor. In fact it is 
easily seen that by means of n relations of this kind it is possible to eliminate n 
of the quantities a>k in the expressions t1m1 -f- ... tscos, so that these expressions 
assume the form z1oj,k -j- ... Ts-nV)s—n- Conditionally periodic systems for which 
relations of the type (13) hold are called “degenerate” and play an important part 
in the quantum theory. In § 2 we shall meet with a typical example of a degene
rate system.

We shall now proceed to derive expressions for the values of the coefficients 
C, which occur in the expansion in a trigonometric series

/■(Qi,-- - 7s) = ... rse27rf^^+---^^),

where /'(g1, . . . qs) is a one-valued function of the q’s. According to Fourier’s theo
rem we have1)

Crx, .. rs = \ . . . . \ f(q1, . . . qs)e~27ti^^+ ••• + Tslus) div, . . . divs, (14) 
•Jo Jo

where the qs are regarded as functions of the m’s and the Z’s. We shall transform
this expression into a multiple integral taken over the q’s, instead of over the tv’s, 
by means of the transformation formulae (8), which by means of (7) may be written 
in the form

The functional determinant of this transformation is given by

... u>s) d2S I d]/Fj _
~ dlkôqt ~ 8 Ik ~ ’

and consists of the sum of a finite number of products of functions which each 
contain only one of the q’s. Transforming (14) we now get

fl* . • dSt
CT1, .TS = y...y(q1,...qs')e 2Kl rkTk 8 Ik d dqt . . . dqs, (15)

J) See C. V. L. Charlier, Die Mechanik des Himmels. I, p. 106. It will be noted that the method 
followed in the present paper is a simple generalisation of the well known method by which the coor
dinates of a planet performing a Keplerian motion are expressed, by means of a simple Fourier series, 
as functions of the time.
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where the inLegration must obviously be taken once up and down between the 
limits of oscillation q' and q" of every q. Let us now assume that f(ql, . . . qs) can 
be written in the form of the sum of a finite number of products of functions, 
which each depend on one of the q’s only:

/V/i ’ ‘ = fMqJ fzrtqj ■/
r

sr (Qs) • (16)

Then it is easily seen that the value of the coefficient C, given b;y (15), will be
equal to the sum of a finite number of products

, ... $1 r 6^9 r ■ • ■ Ar ? (17)

where (/\r is a definite integral of the form
. ô S¡

(I>i =\y>(qi)e cik (18)
•J

The character of 
transformation

these integrals may be brought on

An oscillation of 
increase of by 

f/i up and down between its 
ó SFurther the functions VJ 
ö/a-

limits qi and 7, corresponds to an 
will be periodic in </>t with period

2~, unless k = i, in which case we have obviously 

file integral 118) may therefore be written, denoting by P(i,Pt,.. Ps a set of 
periodic functions of with period 2-, in the form

01 = k \ 2,,qTi'pK^ii

*>0

It is possible to express the* coefficients C in the simple form given by (17), 
only if the function !\qv, ■ ■ ■ qs) that we want to expand in a trigonometric series 
can be written in the form (16). Now in the quantum theory a series expansion 
of the rectangular Cartesian coordinates which describe the positions of the particles 
of the system in space is asked for, and it might be of interest to investigate 
whether these latter coordinates always may be expressed in terms of the coordinates 
(/!, ... qs, in which separation of variables was obtained, by a formula of the form 
(16). If the set of coordinates qt, ... qs belongs to the well known class of „elliptical 
coordinates“, it is at once seen from the general formulae holding for this kind

D. K. D. Vidensk. Selsk. Skr., natui'vidensk. og mathem. Afd., 8. Række, III. 3. 38 
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of coordinates, given by Jacobi1), that the Cartesian coordinates are functions of 
the elliptical coordinates of the type (16). In the applications of the quantum theory 
hitherto made, separation of variables is always obtained in one or other set of 
elliptical coordinates2), and, due to the special form of the expression for the kinetic 
energy in mechanics, it seems highly questionable if, for a mechanical system con
sisting of particles moving under the influence of conservative forces, it is possible 
to obtain separation of variables in other kinds of coordinates.

§ 2. Hydrogen atom undisturbed by external influences.
In this chapter we shall apply the above analysis to the problem of the motion 

of an electron of mass m and charge — e rotating round a positive nucleus of infi
nite mass and of charge Ae, which attracts the electron according to Coulomb’s 
law, assuming that the motion is governed by relativistic mechanics. As well known 
this system represents the model of a hydrogen atom where the mass of the nucleus 
is regarded as infinite. If the laws of Newtonian mechanics w'ere applied, the electron 
would perform a periodic Keplerian motion, but as soon as the modifications in 
the laws of mechanics, claimed by the theory of relativity, are taken into 
account the motion will no more be simply periodic. The orbit of the electron 
will, however, still be plane and may be described as a closed periodic orbit on 
which a uniform rotation round the nucleus is superposed. Moreover, assuming 
that the velocity v of the electron is small compared to the velocity c of light, the 
closed orbit in question will differ from a Keplerian orbit only by small quantities 
of the same order of magnitude as »"'¡c2, while also the ratio of the frequency o of 
the superposed rotation to the frequency of revolution of the electron in the closed 
orbit will be of the same order as i/!/c2.

From these simple properties of the motion it would be possible, quite inde
pendently of the theory of separation of variables, at once to derive trigonometric 
series expressing the displacement of the electron in different directions as a function 
of the time with neglect of small quantities of the order »’/c2. In fact, the expansions 
in a trigonometric series for the Cartesian coordinates f and of a point describing 
a closed Keplerian ellipse are well known in celestial mechanics, and from these 
expansions are easily obtained the expressions for the Cartesian coordinates x and 
i/ in a fixed system of coordinates, relative to which the £-3? system rotates uniformly 
with the frequency o. An example of a procedure of this kind will be given at 
the end of this chapter, where the influence of a magnetic field on the motion of 
the electron in the hydrogen atom will be treated. For the present, however, we 
will for the sake of illustration treat the problem by means of the general method

’) Jacobi, Vori, über Dynamik, p. 202.
2) Rectangular coordinates, polar coordinates and parabolic coordinates may all be regarded as 

special cases of elliptical coordinates.
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discussed in § 1, making use of the fact that the system under consideration allows 
of separation of variables in polar coordinates. This method also offers the advan
tage that it allows us to determine the coefficients C in the trigonometric series, which 
represent the displacement of the electron, to any degree of approximation desired.

Consider the motion of the electron in the plane and let the position of the 
electron be described by means of polar coordinates r and <p, where r is the length 
of the radius vector from the nucleus to the electron and <p the angle which this 
radius vector makes with a fixed direction. These coordinates are connected with 
the ordinary Cartesian coordinates x and z/ of the electron by means of the relation

x 4- iy = re1^. (20)

In order to find the expansion of x and y in trigonometric series it will therefore 
be sufficient to calculate the coefficients C in the series

E

r

2

(22)

(23)

o me“

is the

As this equation does not contain ip, 
d Sby putting equal to the

momentum of the electron

Ne2
r

rei<p = 2X^.7, e‘-~i(T'Wi +T-W2\ (21)

where iv1 and iv2 are the angle variables which correspond to r and <p respectively 
in the manner described in §1.

Introducing the notation /• = (1 — p2/c2)_1/1, where z?2 =
square of the velocity of the electron, the momenta pr and p& which are canoni
cally conjugated to the coordinates r and <p will, according to the laws oí relativistic 

mechanics, be given by 
system, which is equal 
tion of pr, p<p, r and <p,

pr= and p& = The total energy of the
dz dz

to mc2(; — 1)-------- , will therefore, considered as a func

he given by

■ J

as as 
dtp ~ a'2’ or

Introducing now the quantities I defined by (6), we get

1/F(r)dr, I2=\a2d(p,
_______________ Vo

i) Compare for these and the following calculations P. Debye, Phys. Zeitschr. XVII p. 512 (1916).
38* 

a separation of variables is directly obtained 
integration constant a2, which will represent the angular 
round the nucleus. This gives

nrc¿

The Hamilton-Jacobi partial differential equation will consequently be of the form 

rør-]-*’
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where Llie first integral is to be extended twice between the two roots of tlie inte
grand. Evaluating these integrals and expressing the as as functions of the /’s, we 
get, expanding after powers of 1/c2 and neglecting terms containing squares and 
higher powers of this quantity,

I1 r( c H 4(Z, + Z,)*h’ a,—a«* (24'

In the expression for the energy av the term which does not contain 1/c2 gives the 
value of the energy for an unrelativistic motion, while the terms containing 1 c2 are, 
as will be seen in Part II, determinative for the fine structure of the hydrogen 
lines. We may, however, neglect these terms in the following since, for the purpose 
of the present paper, it will only be necessary to calculate the values of the 
coefficients C in (21) to the first approximation, z. e. with neglect of quantities 
containing 1/c2 and higher powers of 1/c2.

Introducing the above values for a1 and a2 in (22) we find in this way for 8 
the expression

where we have introduced the abbreviations

1
4 7T- Ne‘m ’ / = A + /, (26)

It is easily shown that xl2 will be equal to the half major axis of the orbit des
cribed by the electron.

According to (8) the angle variables zzq and zz?2 will be defined by

 rdr 

tr
dr 

Introducing now the abbreviations

(28)

2 n iv1

= 1/1—7%

where g may be simply shown to be equal to the eccentricity of the orbit, and 
introducing (compare (19)) a new variable by means of

it is easily seen that
r = xl2(l 4-scos^),
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dr 
¡/- /-r-I-2 ^2rxl2 — ri = d p,

so that the equations (27) may be written in the simple form

2 7T
d
(1 -|- s cos p) dp = p e sin p tt

2æ(w2~- iv}) s'
d

dp - ,
1 + e cos p '

Hog s i s' sin p 4- cos p
1 4- £ cos p

(30)

According to the definition of angle variables, an arbitrary constant may be added 
to the values of m1 and w.2. In the present case the additional term tt is written 
on the right side of the first of the above equations in order to obtain a final 
formula which is as simple as possible.

In order to obtain now the coefficients in the expansion (21), we might 
proceed by directly applying (14), but the calculation can be made shorter by 
observing that the mechanical system under consideration possesses symmetry round 
the nucleus and that as a consequence of this all coefficients in (21) will be 
equal to zero except those for which r2 = 1x). This means that the expression 
reiç>e-2^iw, will pe a function of only and may be expanded in a simple Fourier 
series. In fact from (29) and from the second of the equations (30) we have

relVe2^i(W1 Ws) = z/2(i £ cos 1 ^os^e-i<r
v 1 1 I - £ cos p

= x I2 (e is' sin p> -j- cos p),
(31)

and this is, according to the first of the equations (30), a function of u>1 only. Now 
the coefficients AL in the series

£ is' sin p cos p — 2'Are2niTlVi (32)

are easily obtained 
integral

by evaluating, according to Fourier’s theorem, the single definite

A_ -4 ier sin p 4- cos p) e~27CiTWi dw1,

which is simply changed into an integral over p because we have from the first 
of the equations (30)

= (1 + e cos (i) ,
so that 2*

A_ = \ (£ 4- i s' sin p ~4 cos d>) ( 1 4~ e cos "i£Tsin 4 dp. (33)

Vo

’) See N. Bohr, loc. cit. Part I, p. 33.
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The product of the first two factors of the integrand may be written as a sum 
of terms a 2e 2i^ l a_1e^a,,e2i^. Remembering that

(n integer) (34)

where Jn(o) is the Bessel coefficient of argument /> and order n, we see therefore 
that Ar may be written as a sum of Bessel coefficients of different orders and of 
argument te, each multiplied by a certain factor. Performing the necessary calcula
tions and contracting terms by means of the well known formula

Jn — 1 (|°) *Ai + 1 (¿o) — Jn (p) >
we finally get the result

¿r = —+e')Jr-l(r£) — (1 —s')Jr + i(re)p

(35)

(36)

This expression becomes undetermined for r = 0. By introducing, however, this
3value for r directly in (33) we get Ao = — e. For the expansion of x^iy in a tri

gonometric series we therefore get from (31), (32) and (36) 

X i if/
3 1 I= - ex Z2 e2f — X Z2 2 r Í ( 1+ sVr- i(re)-(l-ê') JT+i(r=) <?1 ».+«.), (37)

where the summation is to be extended over all positive and negative entire values 
of r except T = 0, and where the factor xZ2, as mentioned, is equal to the half 
major axis of the orbit of the electron.

The values of the coefficients are, as mentioned above, calculated with neglect 
of small terms containing the square and higher powers of l/c; it will, however, be 
observed that, also if these terms were taken into account, there would in the 
expansion for x iy only occur terms of the form e2Ki^-^lv^ +due to the symme
try of the system.

The expressions for iv1 and iv2 as linear functions of the time are given by

lvi = w2 = co2t — d2, (38)
Q Q rj

where, according to (11), cu1 == ~ and a>2 = representing the total energy
of the system as given by (24), and where and d2 are constants. We thus see 
that the motion of the electron may be considered as a superposition of an infinite 
number of circular harmonic vibrations, the frequencies of which are given by the 
numerical values of r—liyx + it>2, where r may assume all positive and negative 
entire values, and the amplitudes of which are directly given by (37).

The values of <z»x and w2 differ only by small quantities of the order y2/c2, their 
difference being equal to the frequency o mentioned on page 10, and become equal when 
the relativity modifications are neglected (c = oo). In this case the expression (37) gives
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X-4-iy = v±L1 + £')Jt jO-s) —(1 —s'Wt + íM [e2rI-(TWí+^)j (39)

where co is the frequency of revolution of the electron in its Keplerian orbit, and 
where d is an arbitrary constant. The last expression is easily seen to be identical 
with the expressions for the coordinates of a point performing a Keplerian motion, 
which are well known in celestial mechanics1), and from which, as mentioned in 
the beginning of this section, the expression (37) could have been deduced directly.

In the preceding considerations the problem has been treated as the 
problem of the motion of the electron in a plane. If we, however, consider the 
motion of the electron in space, we have to do with a mechanical system of three 
degrees of freedom. This system will appear as a degenerate system, because there 
will occur in the trigonometric series representing the displacement of the electron 
in any direction in space only two fundamental frequencies, viz. the frequency coA 
of the radial and the mean frequency co2 of the angular motion of the electron in 
the plane of its orbit. In the presence of a homogeneous magnetic field, 
however, the system will no more be degenerate, because a third fundamental 
frequency will occur in the motion of the electron, which no longer will remain plane. 
In fact, assuming that the intensity of the magnetic force is so small that we may 
neglect small quantities proportional to the square of this intensity, we have accor
ding to a well known theorem of Larmor, that every possible motion in the pre
sence of the magnetic field may be obtained by superposing on a possible motion 
of the system without field a slow uniform rotation round an axis through the 
nucleus which is parallel to the direction of the field. The frequency of this rota
tion will be given by 

where c is the velocity of light and H the intensity of the magnetic force. From 
this we see that the mean frequency of rotation of the electron round the above 
mentioned axis, which we will denote by co3, will be equal to co3 = co2 of/, where 
the upper or lower sign holds according to whether the direction of the superposed 
rotation has the same direction as or the opposite of that of the rotation of the 
electron round this axis.

Let us now ask for the trigonometric series in which the displacement of the 
electron in different directions in space can be expanded in the presence of a 
magnetic field. Take the nucleus as origin of a system of rectangular Cartesian 
coordinates x, y, z, the z-axis of which is parallel to the direction of the magnetic 
field. Let the angle between the z-axis and the plane in which the electron at any 
moment moves be denoted by and let the position of the electron in this plane 
be described by means of rectangular coordinates ç, jy, the jy-axis being perpendi-

q See for instance Charlier, loe. cit. I, p. 215. 
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cular to the z-axis. Then the coordinates x, ij, z defining the position of the electron 
in space will be connected with ç and zy by means of the formulae

z — -cos//, x-\-iy — (f sin 4" lî?) ß2~l^Ws (41)

Now, according to (37) and (38), 
7j is expressed by

the dependency on the time of the quantities ~ and

ç4-fîj = £zp*e27Tl(-W1+--- yJ -- 2'1 (1 + s')JT..t (re) —(!—*')Jr+1 (re) e3««««.+

where the summation has to be extended over all positive and negative values of 
r, except z = 0, and where for simplicity we have taken the quantities rq and o2 in 
(38) equal to zero, what is easily seen not to restrict the generality of the consider
ations. By means of this formula we get from (41), denoting cos ft by« and sin // by

z = — (1 - s') JT+i(re)| cos 2-(r-1 /

where again the summations are to be extended over all positive and negative entire 
values of z except z = 0. Il is seen that the motion of the electron may be regarded 
as a superposition of linear harmonic vibrations parallel to the axis and of fre
quencies z—1 (Oj -j- a>2 , and of circular harmonic rotations perpendicular to this 
axis and of frequencies z— 1 «q-j-o>3. and z 4- 1 (t>i — 2&q «q . In the expres
sions, given by (42), for the amplitudes of these vibrations small quantities of the 
same order as 1,2/c3 are neglected, just as in (37), while from the above calculation 
it is seen that the magnetic field, at any rate in first approximation, does not affect 
the values of these amplitudes.

§ 3. Hydrogen atom under the influence of a strong homogeneous electric 
field of force.

In this chapter we shall consider a mechanical system, consisting of an elec
tron of charge — e and mass ni, which is subject to the attraction of a nucleus of 
charge Ne and of infinite mass as well as to the influence of a homogeneous electric 
field of intensity 7q assuming that the motion of the electron is governed by 
the laws of Newtonian mechanics. We shall assume that the force eF is small 
compared with the force which the nucleus exerts at any moment on the electron, 
and it will be our purpose to solve the equations of motion by means of trigono
metric series of the type (12), in such a way that we shall neglect in the calcula
tion of the coefficients C small quantities which are proportional to the first power 
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(43)

• ?
the system will be given by

5

to the coordinates ç, r¡ and

E

2

The Hamilton-Jacobi partial differential equation will be obtained by introducing 
p= = , pr¡ = (q , p<¿ = y-, and by pulling the expression for the energy thus

obtained equal to a constant cq:

T= ™(x’ + !/ä + iä) = ’ L
- O \ Ç 7]

that the momenta, which are canonically conjugated 
are given by

6T m$-\- y ¿ 
= ; r ç>oc 4 ?

Denoting the distance Vx2y'2 z¿ of the electron from the nucleus by r, the 
potential energy of the system will

Ne3P = -- -\-eFz =r

ÔT  m$-\- 7j .
ôÿ 4 7 1

~ and r¡ are two parameters defining the two paraboloids of revolution which have 
their common focus at the nucleus and their common axis parallel to the z-axis 
and which pass through the electron, while is the angular distance between the 
xz-plane and the plane containing the z-axis and the electron. Denoting in the 
usual way the differential coefficients , .... by x, é, ■ ■ ■ - , the kinetic energy
of

and to higher powers of F. For the system under consideration a separation of 
variables can be obtained if parabolic coordinates are used to describe the 
position of the electron in space ’)• If x, y, z, arc the coordinates of the electron in 
a system of rectangular Cartesian coordinates with the origin at the nucleus and 
with the z-axis parallel to the direction of the external electric force, these para
bolic coordinates may be defined by

Z = f “ 2
2 ’

be represented by

2 Ne3 !.. _
V i //

so that the total energy E, expressed as a function of p=, p^, p?, which
enters in the Hamiltonian equations of motions (2) of the system, will be given by

so

Effecting in this equation a separation of variables we find 

’) P. Epstein, Ann. d. Phys. L., p. 489 (1916).
I). K. D. Vidensk. Selsk. Skr., naturvidensk. og mathem. Afd., 8. Række, III. 3. 39
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O Q i
= 2^~ + 2(znNe2 — a2)?‘- 2ma1£2 — m«F¿3,

dS
ÔTJ

ÖS 
d ip

1 ¡/— a3 + 2(m Ne2 -j- «2) “ 
2k

2 m a, ^2 4~ meFrf,

where a2 and «3 are two integration constants. According to (6) the quantities 
I2 and I., will now be given by

(45)

where in lhe expression for and 12 the integration is to be extended twice be
tween the roots of the integrands. Expanding after powers of F, and expressing lhe 
as as functions of the /’s, we find

2 jr2 N~ e1 m 
(Ä + VHaF

(46)

In these formulae J' is a small quantity containing Lhe second power and higher 
powers of F, while d" is a small quantity containing the first power and higher 
powers of F. The term in the expression for the energy <z1 which is proportional 
to F is of large importance for the determination of the frequencies occurring in 
the motion of the system, but, since in the calculation of the coefficients C occur
ring in the trigonometric series representing the motion we shall, as mentioned, 
neglect small quantities proportional to F and higher powers of F, we may neglect 
this term, as well as the terms d' and o". In this way we find, by introducing (46) 
in (44), for 8 expressed as a function of ç, <p, Ilf I2, I3,

2 7T /

where we have introduced the abbreviations
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7=4 + ^ + A-

303

The angle variables

2ttw2

(49)

of £ and zz two new variables i[> and Z bY

(50)

drt
dZ>

(a)

(b)

the equations (51) (a) and

>2’

= 2n

l/— x2 4 P 4- 2 x (212 + /.,) t¡ — 7j

2 nr

d çA,

2n-iP1

27TZV:}

it is easily seen that

de

iv{, iv2 and iv:i will now, according to (8), be defined by

€

Writing

=277 = +

Introducing the notations

„ _ A_ = 1
1 2xl2 I

(b) become

2nrv1 - tr, sin 0 4" ^2 s’n Z + r

2ttlu2 — <71 sin <p -f- ^2 s’n Z H" Z 4“ "•

_1
Z 4 7T2 Né2 in ’

27TW2

and introducing (compare (19)) instead 
means of the formulae

¿ 4" Pi eos ÿ ■>

I/- x2'll P + 2~X (21. + /3)H - f

and that the equations (48) may be written in the form

2tt u\ = 27P { Li sin 4- L2 sin /) 4~ 4- 7r,

2tt iv2 = (L, sin cl) 4- L2 sin /) + Z +

1 , T • . i ^-v Z d^ ( ÇZ dz \
2ÏÏF Sin + Li Sin X) ' "~2~ 2 ( \ M14-L} cos 4 ' \ M, 4- L2 cos%]

2 ’

Ô s i ( df x/(2z2+/3)£4-e2 i -zZ(2/24-13)5? + ^
dl} 2xp\ e |/_Z2J|i3+2x(2z14-z3)ze-e2’f‘ 2z/4 7 -x3ZsV’+2x(2Z2+Zs)/7-71

dS 1 Tdç -//(2Z. ■ 4 z/(24 í 4)ÿ + Ñ
8I2 2xP\ V-x2IIP+2x{2I1-{-I3)H-^ '

V

2'Z J 7 |/.- z2 Z2Z-+ 2x (2 Z24- 4) Iy-r/-

ÔS i ('de — z-/:;/ -WÑ e9 , 1 ^dT) 7. ‘ 1.,P —XÑÑ- 1^7) \~7¡¿
dl3 2zZ2> ,-|-/4/ 2/(2^ ‘r 2z/^ ? |4 7I!J- 2y,■21^1^1^'

(48)

(51)

39*

(52)

(53)
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These equations show that and y, and consequently ç and rz, are functions of w} 
and w2 only. From this it follows that the displacement z = — — of the electron 
in the direction of the z-axis may be expanded in a doubly infinite series of the form

(54)

where the summation is to be extended over all positive and negative entire values 
of Tj and t2. According to Fourier’s theorem we get for AT1, r2

Tj (55)

Following the procedure given in § 1 we will now transform this integral in an 
integral over and y. From (52) and (53) we get for the functional determinant 
of this transformation

d(wvw2) _ _j_ COS + 1 
~2 <72 cosy

cos (!>

(T2 cos y —

For z = % we fr°m (50)

COS —1~ <7, COS y^)> (56)

2
M, — M9 . L. cos — L9 cos •/ T . , r.>

= 2 + 2 ~xZ^tfjCOs^ — <r2cos/).

Hence, if both and r2 are different from zero, the integral (55) assumes the form

r2 cos /)(!-)-o-! cos (p-\- (j2 cosy)d(l) dy, (

where T = Tj H- T2.

The expression (57) is equal to the sum of six terms each consisting of the product 
of two definite integrals of the type

constant x (58)

where p is equal to 0, 1 or 2. This integral will be seen to be equal to a sum of 
Bessel coefficients of argument and of different orders, each multiplied by a 
factor. Performing the necessary calculations, making use of (34), and contracting 
terms by means of (35) and of

1 7 7

2 ^n~

we get the final result

(/>) — A+i(/o))



21 305

IV.,

(59)

As regards the term An 0 in the expansion (54) for z, we have obviously

The expansion for z in a trigonometric series therefore assumes the form 

z = — ¿>) + xF2^ |6T2 J'T1(zal)Jr2(T(72) j «>»), (ßQ) 

where the summation is to be extended over all positive and negative entire values 
of T] and r2, with exception of the combination = 0, r2 — 0. For the combina
tions for which T = Tj r2 == 0 the expression for the coefficients becomes unde
fined, but by introducing r = 0 in (57) it is easily seen that the coefficients in 
question are equal to zero.

In order now to find the trigonometric series representing the displacement 
of the electron in the direction of the x-axis and of the y-axis, we might follow 
the procedure indicated in § 1, but the calculations may be made shorter, just as 
in § 2, if we observe that the z-axis is an axis of symmetry of the system, as a 
consequence of which the expansion for x iy will only contain terms of the type 
(je27tt(~1wi + T,irt + u’3) _ in factt jf we note that 

K

K

the equations

-f- i K sin ■

d ÿ

so that, making use of (43), we have

(x --j- ii/)e27r'(w« — "’») = Vqr] e ' <P +

cos + i K si o j [ (M2 + La) cos ^ + il< sin L j
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The last expression contains only ÿ and y and is therefore a function of il\ and u>2 
only, which allows of an expansion of the form

(a:-|-ïÿ)e2îri(w*— U!’) — 2’Brp e2rr'3Tiwi + rs +1 up (61)

where the summation is to be extended over all positive and negative entire values 
of Tj and r2, and where the coefficients B according to Fourier’s theorem are equal to

1 1 . (b I; (Mx -|- L} ) cos | + IK sin 9 j •

• j (M.2 + L2) cosiÆsin^-j e 2~'^u^ +r^ + 'i,v^divxcliv2.

We will now transform this expression into an integral which is taken over and 
y, making use of the expression (56) for the functional determinant of the trans
formation. At the same time we will introduce the abbreviations

I6

the formwhich allow us

K

1 ?

K
4/T3

A
i ’

ol and a, in

<79

£23 *3

¿2

4
i ’ b + bi

cos 2

‘.-I

K

£2 £23 cos y ;

to express the quantities K,

M,, ~ Z^2(i2 £2s)>

get, denoting rx -j- r2 4- 1 by

= (_ i)r l/(M1 + Lj) (^2±A) Ç \ ( cos 4 -r i■

4?r2 ) H 2 ' M
V0 Vo

• (1 (Jx COS (!) — (J„ COS y)e~i{Tl + 1b^ </' irrisín (/> ~ i(Ti+1h) X — iTOtsmX y

We see that the last expression becomes equal to the sum of a number of terms 
each consisting of the product of two integrals of the type (58), where p is equal 
lo 0 or 1. Making use of formula (34), we may write each of these integrals as a 
sum of Bessel coefficients of the same argument and of different orders. By means 
of elementary calculations and making use of (35), we get in this way for the B’s 
the final expression

T2 =------- ' ) -13 *23'^1 (rtfj Jr2(r<72)  £2^rl + 1 (r<7l)^T2 + 1 (r<T2) p (^)

This expression becomes indefinite for r = 0, but by introducing this value of - 
directly in (64), we easily find

(64
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(66)

while for all other combinations of rx and r2 for which t = + r2 1 = 0 the
coefficients become zero. From (61), (65) and (66) we see therefore that the expan
sion of x iy in a trigonometric series may be written in the form

£2 £13
g27Ti(—W, + Ws))

— X Z2 211 {e13 i23 Jrx (wx) Jr2 (t<t2) — q i2 Jrx + 1 (t<tx) Jrt + 1 (ra2) } e2™(T-
(67)

where the summation is to be extended over all positive and negative entire values 
of the t’s, with the exception of such combinations for which r = rx + r2 4- 1 = 0.

From (60) and (67) we obtain directly the expressions for z and x - iy as 
functions of the time by introducing for the zu’s their expressions as linear func
tions of the time. According to (12) we have

= (O^t Oy, IV2 — (O2t 4" ^2’ W3 ~ W3^ ^3’ (^8)

where by means of the expression (46) for ax the «/s are, with neglect of small 
quantities proportional to F2, found to be equal to

(Oy = a>å 4- 0/--, w2 = ^3 —

4 7T2N2e4 m = 3FI
I3 8F-Nem ’ 0/ Sn'-Nem’

(69)

while <?j, o2 and are constants.
Introducing (68) in (60) and (67), and taking for simplicity J2 and o., equal 

to zero, we get

z = 'I xia} - + —^’741(^1)Jr2(r<70)}e2^fr>w> + ^^)£,
2 r

X 4- i y = 2 £23e 2 W1 + Ws) 14~ g27Ti(— (l>2 + (70)

(tztJ Jr2 + 1 (t<72)} e27r* <T’W* + ^ +

It would be easy to write the series for z as a series of cosine terms with real 
coefficients, but the form given above is more symmetrical. The formulae show 
that the motion of the electron may be regarded as a superposition of an infinite 
number of linear harmonic vibrations parallel to the direction of the electric force 
with frequencies rxwx —, and of an infinite number of circular harmonic 
rotations perpendicular to this direction and with frequencies v1a)1 4“ (02 4" w3 • 
may once more be remembered that, in the above expressions for the amplitudes 
of these frequencies, small quantities proportional to F and to higher powers of 
F are neglected.
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From (69) we see that, if we neglect small quantities proportional to F-, there 
exists a homogeneous linear relation with entire coefficients of the type (13) between 
the ío’s, viz. co1 (i>2 — = 0, so that, as far as small quantities proportional to
Fare concerned, the mechanical system under consideration appears as degenerate 
(see page 8) and the motion of the electron can be represented by trigonometric 
series containing only two fundamental frequencies, for instance w3 and oF- Of these 
two frequencies a>3 differs only little from the frequency of revolution of the electron 
in a simple Keplerian ellipse corresponding to the motion for F = 0 and for which 
the values of the I’s are the same, while oF, which is a small quantity proportional 
to F, may be described as a small frequency which is impressed on the motion of 
the electron due to the perturbing influence of the external electric field.

It may be of interest to point out how it can be seen from the formulae (69) 
and (70) in which manner this small frequency plays a part in the deviations of 
the motion of the electron from a periodic Keplerian motion. First of all it will be 
seen that the motion of the electron differs at any moment only by small quantities 
proportional to F from a Keplerian ellipse with major axis xF. Further, taking 
mean values, over a time interval extending from t' to t' -f- 1/W3, on both sides of 
the equations (70), we get, denoting the mean values of x, y and z in this time 
interval by ç, q, and C respectively, and neglecting small terms proportional to F,

3 (71)
Í ^niopt ^li3e2Ki0Ft)’

where t denotes some moment within the mentioned time interval. Now the quan
tities ç, and C have a simple meaning. In fact, since the motion which the elec
tron performs in the time interval t' 1' ^¡aja differs from the motion in a Keplerian 
ellipse with major axis xl2 only by small quantities proportional to F, the quantities 
ç, q and C may with this approximation be said to represent the coordinates of the 
mean position of the electron in the Keplerian ellipse which it at any moment may 
be considered to describe. From symmetry it is seen that this mean position, 
which may be called the “electrical centre” of the orbit, lies at a point on the 
major axis, and a simple calculation shows that this point lies at a distance 3/iea 
from the nucleus if a denotes the major axis and e the eccentricity.1) The formulae 
(71) therefore show that the Keplerian ellipse which the electron at any moment 
may be considered to describe varies, under the influence of the electric field, its 
shape and position in such a way that its electrical centre performs an elliptical 
harmonic vibration in a plane perpendicular to the z-axis round the point in which 
this plane cuts the z-axis. The major axis and the minor axis of the ellipse which 
the electrical centre describes are equal to 3 x Z2 (q í23-j-i2 q3) and 3xZ2 qq3— í2í13 respec-

!) This result follows at once from formula (39) on page 15. Compare also X. Bohr, loc. cit.. 
Part II. page 70.
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lively, while the frequency of revolution is proportional to the intensity of the field 
and equal to oF. The variation of the plane of the orbit during this motion of the 
electrical centre may be found by observing that the angular momentum of the 
electron round the z-axis will remain constant, from which it follows that the area 
of the projection of the orbit on the x-y-plane remains constant. It is easily seen 
that the plane of the orbit is perpendicular to the plane through the major axis 
and the z-axis every time the electrical centre passes one of the apses of the ellipse 
which it describes. In Part II of Bohr’s paper the appearance of the small frequency 
0/. has been discussed from the point of view of the theory of perturbations.

For the sake of the latter applications it will be of interest to examine the 
special form which the equations (70) assume when one of the quantities 71 and I2 
becomes equal to zero. If for instance we assume I2 = 0, it will be seen that the 
fundamental frequency co2 does not appear at all in the motion of the electron. In 
fact, a>.2 denotes the mean frequency with which the electron oscillates between two 
paraboloids of revolution which are characterised by the roots of the integrand in 
the expression for I2 given by (45). For Z2 = 0 these roots coincide, so that the 
amplitude of these oscillations has become equal to zero, which means that the 
frequency co2 is not at all present in the motion. Introducing the value I2 = 0 in the 
equations (70) we have, since in this case, as seen from (62), = i2 = 0, q3 =--= 1,
q3 = £3’ = £i an(l since Jo(0) = 1,

z = z / 7, — r 2 A (rq) cos 2 rr rœi I,

x iy — y X P q ( + —xF 2-3 JT _ i (rq)e2’r’3'r 1 «/> + <*>») < 

where the summations are to be extended over all entire values of r except r = 0. 
The equations (71) representing the motion of the electrical centre become

C — 2 z ’ c + — 3 x/2q j3e ' -7rioez,

showing that the electrical centre will move in a circle and that the Keplerian 
ellipse which the electron at any moment may be considered to describe possesses 
a constant eccentricity equal to q = |/ . The plane of the orbit remains perpen

dicular to the plane through the major axis and the z-axis, while it rotates uniformly 
round the latter axis with frequency 0/.-. The projection of the orbit on the x-y-plane 
is at any moment a circle while the cosine of the angle between the plane of the 
orbit and the z-axis is equal to the eccentricity q. It will be observed that in the 
present simple case the equations (72) could have been obtained from the expression 
(39) for the motion of an electron in a Keplerian ellipse by imagining the orbit 
placed in a position relative to the z-axis as that just described, and by giving it a 
uniform rotation of frequency oz. round this axis, applying the same method of 
calculation as that followed on page 15.

1). K, D. Vidensk. Selsk. Skr., naturvidensk. og niatheni. Afd., 8. Række, Ill. 3. 40
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§ 4. Hydrogen atom under the influence of a weak homogeneous electric 
field of force.

In this section we shall consider the mechanical problem of the motion of an 
electron which is subject to the attraction of a positive nucleus of infinite mass as 
well as to the influence of a weak homogeneous electric field of force, and which moves 
according to the laws of relativistic mechanics. The general case of this problem 
in which the intensity of the electric force may have any value so that the devia
tions of the motion of the electron from a simple Keplerian motion, due to the 
influence of the relativity modifications in the laws of mechanics, must be considered 
as being of the same order of magnitude as those due to the electric field will be 
treated in a later paper which deals with the general problem of the effect of an 
electric field on the fine structure of the hydrogen lines. In this section we will 
only consider the special case in which the electric field is so weak that its influ
ence on the motion of the electron is small compared with the influence which is 
due to the relativity modifications.

Let the nucleus be situated at the origin of a system of rectangular Cartesian 
coordinates x, y, z, the z-axis of which is taken parallel to the direction of the 
electric force. The mass and charge of the electron will again be denoted by m 
and —e respectively and the charge of the nucleus by Ne, while the intensity of the 
electric field will be denoted by F. Let further z be a small quantity of the same 
order of magnitude as the square of the ratio between the velocity of the electron 
and the velocity of light, and f a small quantity of the same order of magnitude 
as the ratio between eF and the forces which the nucleus exerts on the electron. We 
shall according to the above assume that f is small compared to z, and it will 
be our purpose to solve the equations of motion retaining only small quantities of 
the same order as z and f/¿, and neglecting all quantities of higher order of magni
tude such as f, )2 etc. in the expressions for the coordinates x, y, z of the electron 
as functions of the time.

Let us introduce polar coordinates r, #, 9?, which in the well known way are 
connected with x, y, z by the formulae

z — reos ft, x-\- iy = rsin^e'V.

The velocity v of the electron will then be given by u2 = (dridt)2 + r2(dH!dt)2-\- 
r2 sin2 (rfç’/df)2. Introducing the notation y = (1 — where c is the velocity
of light, the canonically conjugated momenta of r, //, q> are given by

dr „dH
= ’ Pv = mTr sin2 H-J- ,

and the equations of motion will be of the canonical form (2) where the energy E, 
expressed as a function of the coordinates and momenta, will be given by r)

’) Compare for instance A. Sommerfeld, Phys. Zeitschr. XVII, p. 506 (1916). See also § 2, page 11.
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Fer cos #.

Proceeding in the same way as in § 2 and in § 3 we get for the Hamilton Jacobi 
partial differential equation

«i
Ne2— 4- Fer cos ft, (73) r

where S denotes a function of r, ft, <p. This equation does not allow of separation 
of variables, but we will solve the equations of motion by method of approximation, 
by solving them first for F = 0 and after that considering the perturbing influence 
which is due to the electric force. For F = 0, however, the problem is the same 
as that which we have treated in § 2 with the only difference that this time we 
consider the motion of the electron in space, and equation (73) is seen to allow of 
separation of variables. In fact, we may put

dtp (74)

where F(r) has the same signification as in (22). We may now introduce the quan
tities Zp Z2, -^3 •

A-Xl/Föödr, 4= (75)

where in the first and in the second integral the integration is to be extended twice 
between the roots of the integrand. It is easily seen that 4/2?r is equal to the angular 
momentum of the electron round the z-axis, while (As + Zs)^ is equal to the total 
angular momentum round the nucleus and plays the same part as the quantity 4/2- 
in § 2. The plane in which the motion takes place makes an angle with the x-y-plane 
the cosine of which is equal to -—3 . The energy of the system expressed as 
a function of the Z’s contains Z2 and Z3 only in the combination Z2 Z3 and is with 
neglect of small quantities of the same order as z'2 given by the expression (24) in 
§ 2, with the only difference that Z2 is replaced by Z2 4- Z3. This gives

«i I2
2 7T2 N2 e4 tn

Z2 ' Z(Z2-|-Z3)// (76)

also a2 
may be

i/’’’
r
es
IT dr o r

where I is written as an abbreviation for Zx Z2 -J- Z3. By means of (75) 
and a3 may be expressed as functions of the Z’s, so that , — and 
expressed as functions of the Z’s and of r, ft and cp respectively. Introducing the 
expressions thus obtained in

40*
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which is a complete solution of equation (73) 
calculate the variables which are canonically

for F = 0, we may according to § 1 
conjugated to f2, I3 by means of

the formulae
ÔS ÔS

= <^2’ = V ró/3

The coordinates and momenta of the electron considered as functions of the /’s 
and m’s are periodic in each of the m’s with period 1. The rectangular coordinates 
x, y, z of the electron may therefore be expressed by trigonometric series of the 
form 2’Ctj,rs, T8e27ri(T,lt'1 + T’Wt+T,tt’3), where the coefficients Crv r2, r3 depend on the /’s 
only and where the summation is to be extended over all positive and negative 
entire values of the r’s. The values of the C’s may be calculated by means of the 
general method exposed in § 1. We will, however, not enter on these calculations 
because they are entirely analogous to those performed in § 2 and in § 3 and be
cause the result may be directly deduced from formula (42). They give that the 
trigonometric series for z and x-j- iy are of the form

z — 2.' Dr cos 2 ~ (t — 1 ivl -j- w2)>
x iy = e27r,:(T 1«h + w.)__y J)-e27i:i^+~1Wi~2w- +

(77)

where the summations are to be extended over all positive and negative entire 
values of r, and where the coefficients Dr, Dr, l)r with neglect of small quantities 
of the same order of x are given by the expressions

(78)

74
{(1+ C)Jr-i(re) — (1 — s')JT+i(re) j , 00

3 r 
= 2 S/7X/-,

- y. P {(1 + O Jr-1 M - 1 . 1 — s') JT+1 (re) j ’ = |e(! + /)zP

Dr - - if {C — OA- i(«) — (1 4- s') JT+i(re) j , £ (1 —//) X I'

where
72 + J3

I e = l/l—s’2,

= fT—
(79)

while Jp(æ) represents the value of the Bessel coefficient of argument x and of order 
p. The formulae (77) and (78) are actually seen to coincide with the formulae (42), 
deduced in connection with the problem of the influence of a small magnetic force 
parallel to the z-axis, if in these formulae we replace a)1t, aj.2t, iu3t by m15 iv2, w3 
respectively. A simple consideration would show that this is just what must be expected.

As long as we assume that F = 0, i. e. that we have to do with the system 
in its undisturbed state, the motion of the electron is directly given by (77) if we 
consider the Fs as constants and for ivv w2, iv3 substitute their expressions as linear 
functions of the time by means of the formulae
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lU/: = COk t + d\, «>Å-
dwk 
dt

ÔE0
Slk (k = 1,2, 3) (80)

where we have denoted by E" the energy of tlie undisturbed system expressed as 
a function of the Z’s, which is given by the expression (76) for ar Since this ex
pression contains I2 and I.} only in the combination I2 -|- Z3, co2 will be equal to co3, 
which means that the system is degenerate as it was already mentioned in § 2. If 
we assume, however, that F is no longer equal to zero lhe motion of the system 
will be perturbed; the coordinates x, y, z of the electron may still be expressed as 
a function of the Z’s and the id’s by means of (77), but the Fs will no more be 
constant during the motion and the zz/s will no more be linear functions of the 
time. The rates of variation with the time of the Z’s and tv's will according to 
Jacobi’s fundamental theorem, mentioned in § 1, be represented by a set of canoni
cal equations

dt owk dt olf. (81)

where E is the total energy of the perturbed system expressed as a function of the 
Z’s and zz/s. We may write E in the form

E = E° E1,

where E" is the energy which the system would possess if the perturbing forces 
vanished suddenly and which, as mentioned, depends on the Z’s only, being given 
by the expression (76) for av while E1 is the so called “perturbing potential”, i. e. 
that part of the potential energy of the system which is due to the perturbing 
force, and which corresponds to the term Fer cos d in (73). By means of (77) we 
find for E1, expressed as a function of the Z’s and zz/s,

E' = Fez = Fel'Dz cos 2^(r-—1 zzz1 + zzz2), (82)

where the quantities Dr with neglect of small quantities of the order z are given 
by (78).

Owing to the fact that the trigonometric series for Z?1 does not contain a term 
which is independent of the zv’s, we may simply proceed in the calculation of the 
perturbations in the following way1), by putting

A = Z;° + Z¿, zu, = zpfcu + mL (/c = 1,2,3) (83)

where Ik, wk represent the solutions of the equations (81) for F = 0, and where 
Ik and ivk contain only small quantities proportional to F and to higher powers of 
F. For Ik and wk we have

J) It may be observed that, by applying to the quantities Ik and ivk a so called infinitesimal 
contact transformation, the results of the following considerations contained in the formulae (85) and 
(86) might have been deduced in a way which, from an analytical point of view, is more elegant. Com
pare J. M Burgers. Het atoommodel van Rutherford-Bohr (Haarlem, 1918), where a treatment of this 
kind has been used in the discussion of a number of problems concerning perturbed atomic motions.
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(84)

functions of the 7’s and

(85) 

3

(86)
0

. -k
I3 the values 7°, 1°, 7° respectively. In order to find 

the equations (81). As E° 
form

Among the terms on the right side of each of these equations the term correspond
ing to r = 0 is much larger than the other terms because for r = 0 the denomi
nator (r—l)ojj — a»2 becomes equal to —co1--co2, and this quantity, which will 
be denoted by o, is a small quantity of the order z. In fact, from (84) and (76) we have

2 4
0 = ----- «>2

Ik — constant, tv°k = a>ktdk,

where we have denoted by I j 
7P 72, 73 the values 1°, 1°, 
first consider the first three of 
m’s they may be written in the

the value of-^y-, obtained by introducing for
0 _ c

the 7l’s and iul’s let us 
does not depend on the

idE°\
o W

The term in (85) corresponding to r = 0 becomes therefore of the order //;, and 
we may according to what has been said in the beginning of this section neglect

2 jr2 N2 e4 m
I"1

ô F1~/A’ {k = 1’2’3)
at oivk v

The right sides of these equations are, as seen from (82), 
iv’s, but if in the calculation of the Ivs we neglect second and higher powers of F 
we may for the l’s and iv’s introduce the values lor Ik and ivk given by (84), so

d 1^that the differential coefficients become equal to known functions of the time. at
Neglecting for simplicity, here as well as in the following, the constants dk appearing 
in (84), this gives

cl I1 —1) 7)^ sin 2tt(t— 1 w1 <z>2) E

(i ji _____
j2 = 2 7T eF £Dr sin 2 7r (r — 1 -J- ^2) ,

4/» = 0
dt

where the quantities Dr denote the expressions obtained by replacing in the quan
tities Dr the Fs by the 7°’s. These equations may be directly integrated and give, 
if the arbitrary constants are chosen such that in the expressions for the D’s no 
constant terms appear,
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the other terms in (85) which are of the order f, so that we get

F = eF cos 2 7c (— 4 w,) to 1 i

I\ = — eF cos 2 7T (— «q 4- <u2) t

n = o-

(87)

It is seen that 7] 4- F2 = 0 as far as small quantities of the order //;. are concerned. 
As a consequence of this the value of the “inner” energy E°, which during the 
perturbations will perform small oscillations, will yet remain constant as far as 
small quantities of this order are concerned. That this must be the case might have 
been seen directly from general considerations. It is further easily seen by means of (85) 
that the amplitudes of the oscillations which E,} performs, will be small quantities of 
the order f, but that the total energy E = E°~\~E1, which is constant during the motion, 
will, as far as small quantities of the order f are concerned, depend on 1°, 7° and 
II only, in a way which is exactly the same as that in which E° depends on 7r 
/2, /3, expressed by (76) if we take a1 = E°.

We will now calculate expressions for the zn’s by means of the last three of 
the equations (81), They give, if we neglect small quantities proportional to F2,

<7(^ + «h) 0(74+ £’) ÓE" , ÔE1 (8E"\ d2E° , dE'
dt dïk = dik 4 dlk ~ \dik)^ r dikdirlr + dlk’

/8 E°\where 1-^-,—I has the same significations as in (84) and where the summation is to 
' k f o d ß J? 0 \

be extended over r = 1, 2, 3. As = atk = ( ¿T/-) ’ tllis efiuation gives

r + (k - i 9 a,tii reit8ir ' + êit ' { ö>

It is seen that the terms on the right side are functions of the Fs and the in’s, 
which may be written as trigonometric series all terms of which contain the factor 
F. In these series we may again replace the Fs and tn’s by the /°’s and íü°’s, given 
by (84) as functions of the time, and with reference to the corresponding calculation 
for the Z1 ’s it is only necessary to keep the periodic terms of frequency —w1-|-íí>2 = o. 
This gives, making use of the fact that I[ 4“ as given by (87) is equal to zero,

dt

cos 2tt (— œ14- «q)

Integrating and choosing the integration constants such that the nd ’s do not contain 
constant terms, we get
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e r Ô (k = 1, 2, 3) (88)

The frequency o given by (86) is easily seen to represent the frequency of the slow 
rotation of the Keplerian orbit which the electron at any moment may be considered 
to describe (compare page 10). The appearance of this small frequency o in the 
denominators in the expressions on the right side of (87) and (88) may physically 
be interpreted by observing that the deviation of the undisturbed orbit from a perio
dic orbit, which is characterised by this frequency, is small, so that even a small 
external force is sufficient to produce large changes in the character of these deviations.

In order to find now for the perturbed motion the expressions for the coordi
nates x, y, z of the electron as a function of the time, with the approximation 
mentioned on page 26, we shall put

x = x° -f- xl, y = y(' 4- y', z = z" z', (89)

where x", y" and z° represent the values of these functions for F — 0, while xl, i/1 
and z1 are small quantities of the order f/A. From (77) and (84) we find for x°, 
and z°

Z(J — X Dr COS 2 7T (r— 1 -p ft>2) I, I
__ • (90)

.r" t ñ/" = 2’¿)-r'e27r'(T + ¿,p’"e2ri(r + 1w1-2w,+ Wl)(i )

quantities xl, yl and z1

7 1

0

\
it

V id<x + l’?/)
Å-

.r* 4- i y'

will be given by

■GaV1 + ■‘(¿■"J,....
(91)

3

/ô(x - ii/)\ . . 4'p/./oI n are functions of t obtained by first differentiating the\ ÔlVk IQf
0 - . .expressions for z and x 4* zz/ given by (77), and by replacing in the expressions thus 

obtained the Z’s by the constants Z*(. and the w’s by iv°k = cokt.
It is seen from (91) that for zl and xl iyx we obtain expressions in the form 

of trigonometric series. While in the series for z° the frequencies corresponding to 
the single terms were of the form z—l(o1-]-(o2 they will for z1 be of the form 
(z—1 (o1 4- w2) i (—' > so that there appear, owing to the perturbing force,

new frequencies in the motion of the electron parallel to the direction of the electric 
force, the amplitudes of which are of the order /’ and the frequencies of which 
are of the form a (ov a — 2 a>1 4* 2 and a — 2 — 2 a>.¿, where a is a positive integer.
As regards the motion perpendicular to the direction of the perturbing field, we see 
that, while x" -4 iy" contained only terms of frequencies z — 1 Wj 4 w3 an<^ 
r4~ 1 «ù — 2w2 4* a>3 ', 4” zz/‘ contains terms of frequencies | (r— 1 4“ ^3)

where the summations are to be extended over k = 1, 2, 3 and where the l1’s and 
ip1’s are the functions of t given by (87) and (88), while the quantities 
(ó (x 4- zi/)j 0

(dz\ 1( dz \b Jo’1
[divj
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(92)

41

COS 2" TCO^t,D() - o

L4^K4aC
l) Compare Bohk, loc.'cit. Part I, p. 36.

I), K. D. Vidensk. Selsk. Skr., naturvldensk. og mathem. Afd., X. Række, III. 3.

-4- (— + io.¿) and (r -j- 1 w1 — 2 <o2 o>3) -£ (— coy 4“ ’ so ^hat in this motion
there appear new frequencies of the form a — 2 œ1 a>2 -4 co3> a-4 2 op— (o2 — a>3, 

aa>1-j-w2—o>3, a-¡-2a)1 — 3ajl-j-a>3 and a — 2<z»14_3o>2—<z»3, where a 
is again a positive integer. Since the quantities m2 and o>3 appearing in the cal
culations do not differ from each other as far as small quantities proportional to F 
are concerned, we see that the motion of the perturbed system under consideration 
with the approximation in question may still be represented as a sum of harmonic 
vibrations the frequencies of which are built up of only two fundamental frequen
cies op and op. In the undisturbed system appeared only frequencies a — 
a-4 1 «p— u2; in ^ie perturbed system appear the new frequencies a — 2 op • -2 op, 
(Ki>v a2 0^— 2cd2. The new frequencies are seen to be equal to the sum or to 
the difference of two of the frequencies appearing in the motion of the undisturbed 
system, and correspond to the sum-tones and difference-tones in acoustics. [That to 
the first approximation only sums and differences and not other linear combinations 
of the original frequencies appear, lies in the circumstance that the perturbing field 
is homogeneous, so that its potential is a linear function of the Cartesian coordinates 
of the electron.1) In fact, as a consequence of this the quantities Z[ and up. appearing 
in (91) contain according to (81) only frequencies which appear also in the undis
turbed motion of the electron. The same is the case for the quantities , ... ■ 
in (91), so that the new frequencies in the perturbed motion can only be sums or 
differences of frequencies occurring in the undisturbed motion.]

Although with the approximation mentioned aj2 and op do not differ from each 
other, the fact that they are not identical will nevertheless be essential for the des
cription of the motion over a lime interval of the same order as 4//2 (compare note 
on page 79). For sake of the applications in § 7 we shall therefore keep op and op 
separated in the following formulae, what, as it will be discussed more closely in the 
paper mentioned on page 26, will be justified on account of the special character of 
the system under consideration.

Let us now proceed to the explicit calculation of the trigonometric series for 
z1 and for x1 + Ù]1- For z1 we get from (91), (88), (87) and (77), omitting in the 
calculations for the sake of simplicity, here as well as in the following, the index (°) 
in Z", Zg, Z° and in

['■4Dr 8Dr\“ La ‘ ÔI.J
1 eF z1 ~ — 

0

eF [ /<5 Dr 8Dr\
2o 2 ÔIJ

eF v (Ô Dr1 2o 2
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where the summations are to be extended over all positive and negative entire 
values of r including zero. Now from (78) and (86) we find by means of elementary 
calculations, omitting, here as well as in the following, for the sake of simplicity 
the argument re of the Bessel coefficients,

S^~ - - Xi {(1 + S') (1 - U-l + (1 - S') (1 + «' ’) .'r+1 !

+ - (1 -¿Tfie

Introducing these values in (92) we find after some simple reductions

3eFx2/3
4o

y P* .
" 2 re e'

(93)

■{(1 +s')((l+e')(3s'—2)—re'(5—3s's))Jr..1 + (l —e')((l - s') (3e'+ 2) + rs'15 - 3 s'2)) Jr+1} ■

• cos 2 yr (t — 2 2 cDÿ) I

- !- 2’ (1 -j- e') (2 -j- 5 re' a“)) Jr-i -j- (s'/j.~ — (1 — s') (2 —|— f> rs'y.-)) Jr+i} cos 2 7vt(d1 t

(94)

r) Jr+i (re)} cos 2n tíd1 t ,

t
£

series the terms corresponding to 
of opposite sign, may be taken

/° ,
+ /r '

The expressions for the coefficients become undefined for t = 0, but by directly 
introducing r = 0 in (92) we find that the coefficient to cos2^(—2a)2)t is equal 

3c2«2 3( c2 I c>2«2)to “ ; , while the constant term in the second series becomes equal to ' ——- 7
£

Further it will be observed that in the second
values of r, which are numerically equal but 
together, so that we finally get for z1

3eFx-' [3 £2/z-z1 == —-j-----  — / cos2;r(—2íí)1
4 0 £

and where in the first series the summation is to be extended over all positive and 
negative entire values of r except r = 0, and in the second series only over all 
positive entire values of r except t = 0.

By a calculation quite analogous to that for zl we may from (91), (88), (87) 
and (77) deduce similar expressions for .r' iy1. Thus we find



35 319

From (78) we obtain

By means of these relations and of (93), (95) may be reduced to

3eFx2l" ’
4o

3(1+//)/^- .(
2e'

V Æ+ {(1 + ((1 £') (3e' _ 2) - ts'
4 70 8

2 H- oj2 H <¿>3) ¿

(5 — 3 s'2)) Jr-i(re)

+ (1 - c')((l - ô')(.3c' + 2) + t£'(5 —3£'2))Jr+i(T£)}e27ri(T-2iU1 + Ws + w’)'

3(1 — fi'}fie- p 2 7TÏ (2 «1 — 3 <WS + O>3'l t
2e'

- «1 - 0(3*' + 2)- re' (5 - 3e'!)) Jr-i(re)

(1 + e')((l + s') (3sz —2)+ts'(5 — 3e'2)) Jr+i(T£)}e2’rí(?+2<tíl-3£Ü2 + w’)í

—(_ 3/z s' e2 “ '+ toa) /

t 2 2"((3 + 5r(l 4- £>')) Jr-i(re)+ (3 - 5r (1 — s'//)) JrH4(re)}e27rí<™>

4r 

(95)

(96)
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where the summations are to be extended over all positive and negative entire 
values of r except r = 0, and where Io, s, s', u. and zz' have the same signification 
as in (94).

In the special case where the undisturbed orbit is circular, i. e. s ~ l, s = 0, 
the formulae (94) and (96) assume the simple form

3eFx2/° "
4o (3/z2 — zz2 cos 2 7T 2 a>2f),

1(97)

From this it is seen that in this case the frequency aq, which did not appear in 
the undisturbed motion, has also disappeared from the perturbed motion. Moreover 
we learn from (97) that the perturbed motion, with the approximation involved in 
this formula, takes place in a plane which rotates uniformly round the z-axis with 
a frequency (— a>2 -4- za3). In this plane the perturbed motion is periodic with period 
ö>2 and may be represented by

- X P|2e27TiW.i

where the //-axis is perpendicular to the z-axis. The centre of gravity” of the per
turbed orbit is seen to be displaced, under the influence of the electric field, to a 

3eFx27°3
point on the --axis situated at a distance , 3zz from the nucleus, in a direc- 
lion opposite to the direction of the component parallel to the f-axis of the force 
which the electric field exerts on the electron.

Another case in which the perturbed motion assumes a simple character is 
that for which the plane of the undisturbed orbit is perpendicular to the direction 
of the electric field (// = 1, /z = 0). In this case (94) and (96) assume the form

3eFz2/°3
4 o — (Jt_i'(t£) — Jr+1 (re)) COS 2 •V1 + iyl - 0. j (98)

We see that the frequency <wa does not appear in the perturbed motion, and from a 
comparison of (98) and (90) we learn that this motion may be described as a Kep- 
lerian motion of frequency zy, in a plane which makes a small angle equal to 
3eFzF 2s .

• j with the æ-y-plane, and which rotates with a frequency — ¿y, -f- za3 
round the z-axis. The minor axis of the Keplerian ellipse is at any moment paral
lel to the æ-p-plane, and the direction in which the electrical centre is “pushed” 
out of the a-p-plane coincides with the direction of the force which the perturbing 
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electric field exerts on the electron. In the paper mentioned in the beginning of 
this section where the general problem, in which the perturbations due to the 
electric force are not small compared to those due to the relativity modifications, 
will be treated, it will be possible to elucidate the meaning and importance of the 
simple character of the perturbations in the two special cases just described from a 
general point of view.



Part II.
Discussion of the intensities of the components of the 

hydrogen lines.

r

§ 5. Application of the quantum theory to the problem of the intensity of 
spectral lines.

According to Rutherford’s theory of atomic structure the atom of an element 
consistsofa number of electrons surrounding a positive nucleus, the mass of which 
is very large compared with that of the electrons and the charge of which is equal 
to Ne, where N is an integer and where —e denotes the charge of an electron. In 
the simple case where the atom consists of a nucleus and one electron only, viz. 
for a neutral hydrogen atom (N = 1), a helium atom which has lost one electron 
(N = 2), a lithium atom which has lost two electrons (N = 3), etc. it has been 
possible to develop methods which allow us to fix the stationary states, not only when 
the atom is undisturbed by external influences, but also when it is exposed to the 
influence of constant small external forces. In special cases, where the external held 
is of such a character that the perturbed atom allows of separation of variables, 
the stationary states will, according to the theory developed by Sommerfeld and 
by Epstein, be given by

4 = nkh, (k 1, .... s) ' (99)

where Ilf .... I8 are the quantities defined by (6), and where /q, .... /q are a set 
of positive integers, while h is Planck's constant1). For instance, in the case of a 
hydrogen atom (positively charged helium atom, etc.) which is exposed to a homo
geneous electric field of force, the intensity of which is so large that its influence 
on the motion of the electron is large, compared to that which is due to the modi
fications in the laws of Newtonian mechanics claimed by the theory of relativity, the 
stationary states will be fixed by the conditions = n1h, I2 = n2/q Z3 = n3h, where 
/1? I2, I3 are the quantities defined by (45) in § 3. If, however, the system is degenerate

h Compare P. Epstein, Ann. d. Phys. L., p. 489 (1916). A method which allows us to treat tlie 
problem of the stationary states of a perturbed hydrogen atom in more general cases has been deve
loped in Part II of Bohii's often mentioned paper. This theory will, from the point of view of introduc
tion of angle variables, be discussed in the paper mentioned in the beginning of § 4, in which it will 
especially be applied to the problem of the simultaneous effect of the relativity modifications and of a 
homogeneous electric field on the hydrogen spectrum, which problem cannot be treated by means of the 
method of separation of variables.
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(see page 8), the number of conditions which fix the stationary states will be less than 
the number of degrees of freedom and equal to the number of fundamental frequencies 
characterising the motion, but just as in the case of a non-degenerate system these 
conditions will be sufficient to fix the value of the total energy of the system, which is 
determining for the frequencies of the spectral lines. If we, for instance, consider the 
undisturbed hydrogen atom in space, we have to do with a system of three degrees 
of freedom, the motion of which is characterised by two fundamental frequencies 
only. Separation of variables is possible for any set of polar coordinates with the 
centre at the nucleus, and three quantities Iv I2, I3 may be defined by the formulae 
(75). There will, however, only be two conditions characterising the stationary states, 
viz. = n1h and I2 -j- I3 = n2h (or, with the notation of § 2, 7) = n1/i, I2 = n2li), in 
intimate connection with the fact that the direction in space of the axis of the system 
of coordinates used for the separation is arbitrary, so that the quantities 72 and I3 
themselves naturally must remain undetermined in the stationary states. A very 
important example ol a degenerate system is further afforded by a system consisting 
of an electron and a nucleus, the motion of which is governed by Newtonian 
mechanics; this system will in the following be denoted as the model of a “simpli
fied hydrogen atom”. The motion of this system is simply periodic and its statio
nary states will therefore be characterised by one condition only. Separation of 
variables may be obtained in an infinite multitude of sets of coordinates, for in
stance in any set of polar coordinates and in any sei of parabolic coordinates with 
the nucleus at the centre. In both of these cases we obtain three quantities I2, 
I3, which coincide with the analogous quantities in § 4, if we take the velocity of 
light c infinitely large, and with the analogous quantities in § 3, if we take the 
intensity of the electric force F equal to zero. The stationary states will in both 
cases be fixed by the single condition 7 = 7X —72 —73 = n/i, where n is a positive 
integer, in intimate connection with the fact that, due to the arbitrariness in the 
choice of the set of coordinates used for the separation, the values of 71} I2, 73 
themselves must remain arbitrary in the stationary states. We therefore have directly 
from the formulae (24) and (46) that the energy in the stationary states of the 
simplified hydrogen atom is given by

,, 27t2N2eini 2 tt2 N2 e[ in
E =----- - r., - = — . 100)7- nJ/r

The frequency of revolution in these states will according to (11) be given by

dE N'2 eï m A:7z2N2eim
= SI = I>~ “ n'lr' ’ <101)

while the major axis of the Keplerian ellipse described by the electron may be 
easily shown to be equal to

I2 _ n2h2
2 K2 Ne- m 2 if2 Ne2 m ’2 a (102)
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The eccentricity of the orbit and the position of its plane in space are undetermined 
in the stationary states.

In the deduction of the preceding formulae, the mass of the nucleus is 
regarded as infinite compared with that ot the electron. If we take into account 
that the mass of the nucleus is finite, the motion of the simplified hydrogen 
atom will still be periodic, the electron and the nucleus describing both a 
closed Keplerian orbit with their common centre of gravity at one of the foci, 
and separation of variables may again be. obtained for any set of polar coordi
nates as well as for any set of parabolic coordinates with this centre of gravity at the 
centre. Performing the necessary calculations, it is easily found that the necessary 
modifications to be introduced in the above formulae on account of the finite mass
of the nucleus are obtained by replacing, in the expressions for E and co, the quantity 
m by = s—r 7— » where M represents the mass of the nucleus. The expres-J M -j- m 14- m/.u ’ 1 1
sion for the major axis of the orbit of the electron remains the same, while the 

n3/i2major axis of the orbit of the nucleus becomes equal to -—â jy-' For the energy 
in the nth stationary state of the simplified hydrogen atom we thus get

F 2 ~2 N'eim 
n2 h2 (1 -{- ' (103)

In the calculations in § 2, §3 and § 4, the correction for the finite mass of 
the nucleus has not been taken into account, but since the motion of the electron 
treated in these sections shows only small deviations from the periodic Keplerian 
motion just considered, it is on account of the small value of m¡M obviously per
mitted to neglect this correction in the calculation of these deviations and of their 
effect on the total energy in the stationary states.

From the above it is seen that the stationary states of a conditionally periodic 
system are fixed by a number of conditions of the type Ik = nkh. Calling this 
number r, the total energy will be a function of n1} .... nr, and according to (1) 
the frequency t/ of the radiation emitted during a transition between two stationary 
states, which are characterised by n, = n', . .. . nr = n'r and n1 — n', .... nr = 7?'.', 
respectively, will be given by

The state of largest energy, characterised by n', .... nr, will in the following be 
denoted as the “initial state”, the state of smallest energy, characterised by n", .... n',', 
as the “final state” of the transition in question. Formula (104) allows us to calculate 
all possible values for the frequencies of the spectral lines which may be emitted 
by the system. Thus, for the spectrum of the simplified hydrogen atom, we get from 
(104) for the frequency v of the radiation emitted during a transition from an initial 
state to a final state characterised by n' and n" respectively — such a transition 
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will in the following be indicated by the symbol {n1n") -

2 7r'¿ el m
/i3(l 4- m ilfj (105)

If we put N = 1, formula (105) represents, as shown by Bohr, to a high degree of 
approximation the series spectrum of hydrogen. Further, if we put N — 2, we should 
on the theory expect that (105) would represent the line spectrum which would be 
emitted by a helium atom which has lost one electron. Certain lines observed by 
Pickering in stellar spectra ((7-> 4), (9-^4), . . . ), and by Fowler in a vacuum tube 
containing a mixture of hydrogen and helium ((4--> 3), (5 -* 3), . . .) were assumed by 
Bohr to belong to this spectrum; and lhe theory was subsequently supported 
by Evans’ observation of these lines in the spectrum of a tube filled with care
fully purified helium, which did not show the ordinary lines of the Balmer series 
((3—>2), (4->2), . . .), but which, in addition to the series observed by Pickering 
and by Fowler, showed a new series of lines lying close to the positions of the 
Balmer lines and which on the theory correspond to (6-> 4), (8 —> 4), ...1).

In the theories given by Sommerfeld 2) for the effect of the relativity modifica
tions, by Epstein 3) and by Schwarzschild1) for the effect of a homogeneous electric 
field, and by Sommerfeld’) and by Debye6) for the effect of a homogeneous magnetic 
field on lhe hydrogen lines, every stationary state of the simplified hydrogen atom 
appears, so to speak, as split up in a number of stationary states in which the values 
ot the total energy differ only little from the values given by (103). Thus, in the case 
of an electric field acting on the atom, the stationary states are fixed, as mentioned 
above, by three entire numbers nlt n.¿, n3, and to a stationary state of the simpli
fied hydrogen atom characterised by a given value of n will “correspond” all 
stationary states of the atom, perturbed by the electric field, for which n, n2 -|- n3 
is equal to this value. Also the three fundamental frequencies aq, aq and co3, 
characterising the motion of the perturbed atom, will only differ little from the 
frequency of revolution co of the simplified hydrogen atom. The effect on the spec
trum, which will be due to the influence of one of the agencies mentioned, and 
which may be calculated from (104), will consequently consist in the splitting up 
of every hydrogen line in a number of components lying very near each other. As 
well known, the above mentioned authors have in this way obtained results as 
regards the frequencies of these components, which are in convincing agreement 
with the experiments on the fine structure, the Stark effect and the Zeeman effect 
of the hydrogen^lines.

fl See E. J. Evans, Phil. Mag. XXIX, p. 284 (1915).
2) A. Sommerfeld, Ber. Akad. München, 1915, p. 459.
3) P. Epstein, Ann. d. Phys. L. p. 489 (1916).
‘) K. Schwarzschild, Ber. Akad. Berlin, 1916, p. 548.
5) A. Sommerfeld, Phys. Zeitschr. XVII, p. 491 (1916).
6) P. Debye, Phys. Zeitschr. XVII, p. 507 (1916).

I). K. D. Vldensk. Setsk. Skr.. naturvidensk. og mathem. Afd. 8. Række, III. 3 42



326 42

Relation (1) allows us to determine the frequency of the radiation emitted during 
a transition, but gives no information as regards the intensity and polarisation 
of this radiation. Now the mechanism of the radiation process with which the 
quantum theory operates is quite unknown and must, on account of the essential 
discontinuity involved in relation (1), he entirely different from the radiation process 
in ordinary electrodynamics, which is essentially continuous. Due to this discon
tinuous character, it has been necessary to introduce in the quantum theory the 
notion of the “a-priori probability of spontaneous transition” between two stationary 
states of an atomic system, which was used by Einstein1) in his explanation of 
the law of temperature radiation on the basis of the quantum theory. Imagine an 
atomic system in one of its stationary states, and let us for the present assume that 
it is uninfluenced by external radiations. Then the system must be assumed to possess 
a tendency within a given time interval to pass spontaneously to one of the other 
stationary states of the system for which the value of the total energy is smaller; 
in analogy with the circumstance that on ordinary electrodynamics a vibrating 
electron will emit radiation and loose energy independent of surrounding radiations. 
A measure for this a-priori probability of spontaneous transition is given by the 
quantity A'„, introduced by Einstein, which is defined in such a way that A'„dt 
represents the probability that the atom in a stationary stale characterised by one 
dash (') will pass spontaneously within a lime interval d/ to another stationary 
state which is characterised by two dashes ("). Besides the quantities A, Einstein 
has introduced other quantities B which are defined in a corresponding way and 
which measure the probability that a transition will take place due to the presence 
of radiation in the surrounding space, in analogy with the circumstance that on 
ordinary electrodynamics a vibrating electron will emit or absorb energy due to 
the action of the electric and magnetic forces in the electromagnetic radiation 
existing in the surrounding space. These probabilities of transition due to the 
surrounding radiation will, however, be proportional to the density of this radiation; 
as a consequence of this, il is easily seen that the value of A', alone will be the 
determinative factor for a calculation of the intensity with which the corresponding 
spectral line will be emitted by the vacuum tube (or flame) in which the radiation 
is excited. In fact, in the luminescent gas (or vapour) this radiation is excited by 
impact of electrons, due to which one electron or several electrons are knocked out 
of the atom, so that the atoms in their different stationary states will not be in 
temperature equilibrium with the radiation present in the surrounding space; on 
the contrary, the density of the latter radiation will be comparatively very small, 
and the quantities B will not play any considerable pari in the determination of 
the intensity of the spectrum. If v is the frequency of the radiation emitted during 
a certain transition, and a' the number of atoms present in the vacuum tube (or 
llame) in the initial slate, the energy of the radiation of frequency > emitted in 
unit time will consequently be given by a'xA', x/?i>.

‘) A. Einstein, Phys. Zeitschr. XVIII, p. 121 (1917).
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Although the radiation process in the quantum theory is so much unlike the 
radiation process in ordinary electrodynamics, it was shown by Bohr that there 
exists an intimate formal connection between these two theories. This connec
tion refers in the first place to the frequencies of the radiation which on the 
quantum theory will be emitted by the atom and the frequencies which on the 
ordinary theory of electrodynamics would be emitted. Consider thus a transition 
between two stationary states of a non-degenerate conditionally periodic system of 
the type described in Part I, the initial state and final state of which are characteri
sed by nt = n\, .... n, = /?' and n1 = n", .... n.s == n" respectively, where 
/q, .... ns are the integers appearing in the conditions (99), and consider the 
multitude of mechanically possible states of the system lying “between” the initial

 state and the final state, for which the quantities .... /, are equal to Ik 
\n".-[~Ä(nk—nk)}h, (Zc = 1, .... s), where x assumes all values between 0 and 1. 
Then it is easily proved that the frequency y of the radiation emitted during the 
transition under consideration is equal to the mean value, taken over all states 
from x = 0 to x 1, of the frequency (n^— n")(ol. .. (n'—ná)a»s which ap
pears in the motion of the electron when this motion according to (12) is resolved 
in its constituent harmonic components. In fact, from (11) it follows that the 
difference in the total energy for two neighbouring mechanically possible states, 
characterised by /, , .... I, and Z1 -|- 3/,, .... I, (- oZ, respectively, may be expressed 
by the formula

dE = (t)Ad I¡ f- .... co,o E, ( 106)
so that we. get from (1)

1*^-1 c;=1 P1
-\ (oqd^ . (o,o Is) = \ d2{(77'L—njcoy-' . . . (ns— n,

»b. o Jx = o Jo

1) See Bohr, loc. cit. Part I, p. 31. Compare J. M. Burgers Het atoommodel van Rutherford-Bohr, 
Haarlem, 1918), who recently has also called attention to this asymptotical relation in the region of large 
n’s, without entering, however, on the hearing of this relation on the problem of the intensity and 
polarisation of spectral lines.

42*

Especially in the region of stationary states where the n’s are so large, that 
for small values of the numbers nk—nk the motion in the initial and in the final 
state differ relatively little from each other, the ¿y’s may be considered as constant 
when X varies from Oto 1, so that the frequency ¡> of the emitted radiation 
approaches asymptotically to the frequency (/?)—n'() wi H-• • • • (n', — 
present in the motion of the system.1)

From this remarkable connection in the limit of large n’s between the fre
quencies of the spectral lines to be expected on the quantum theory and the fre
quencies -ÿ- .... rs(os of the harmonic vibrations in which, according to (12), 
the motion of a conditionally periodic system may be resolved, and which there
fore according to ordinary electrodynamics would occur in the electromagnetic 



328 44

radiation emitted by the atom, we may according to Bohr draw the conclusion 
that also the intensities and polar isations of the spectral lines emitted 
in the region of large n’s will asymptotically be the same as the 
intensities and polarisations of the corresponding lines which on 
ordinary electrodynamics would be emitted by the atom. This hypo
thesis is in agreement with the fact, that in the limit of large wave lengths Planck’s 
formula for the intensity distribution in temperature radiation coincides with the 
formula of Rayleigh and Jeans, which is deduced on the basis of ordinary 
electrodynamics. Now the radiation energy emitted in unit time by an electron 
performing in a certain direction a linear harmonic motion which may be repre
sented by x = C cos 2 x ad, where C is the amplitude and co the frequency of the 
vibration, would, according to the laws of electrodynamics, be proportional to the 
mean value of the square of the acceleration of the electron and would therefore 
be given by gC2col, where g is a universal constant with the value of which we 
are not concerned here. From the above we may therefore conclude that, for a 
conditionally periodic system consisting of a single electron moving in a fixed field 
of force and the stationary states of which are determined by (99), the a-priori 
probability of spontaneous transition between an initial state characterised by the 
large integers n'2, n'3 and a final state characterised by nt == n\ — t1? n2 = n2 — r2,, 
n3 = n3—r3, where rT, r2, r3 are a set of positive or negative integers which are

q
small compared to n', n2, n's, will be asymptotically given by gC2aS ha> = '^C2^', 

where w = t1o»1 t2<w2 -J-t3<u3 represents the frequency of the emitted radiation and
C the amplitude of the harmonic vibration of this frequency occurring in the 
motion of the electron in the initial state or in the final state. For simplicity it has 
in this consideration been assumed that the vibration of frequency -j- r2w2 -4- r3w3 
is linear, parallel to a given direction, and we may therefore further conclude that 
the radiation emitted during the transition in question is linearly polarised in this 
direction. In the cases where, on ordinary electrodynamics, the radiation of frequency 

J-r2w2-1-r3«>3 in the states under consideration would be circular or elliptical 
we shall naturally conclude, that the probability of transition can be calculated in a 
corresponding way, and that the radiation emitted during a transition will be 
circularly, resp. elliptically polarised, the directions in space characterising these 
polarisations being the same as those characterising the corresponding harmonic 
vibrations in the motion of the system.

Returning now to the region of stationary states where the n’s in (99) are 
small numbers, we may assume, according to Bohr, that there will still exist an 
intimate connection between the coefficients C appearing in the trigono
metric series of the type (12) by which the m o t i o n o f the s y s t e m m a y 
be represented and the a-priori probabilities for transitions between 
these states. Thus, if for the displacements of the particles in all directions in 
space the coefficient Cr®,.. r®, corresponding to the frequency - .... r"w0. is 



45 329

equal to zero, independent of the values of the /’s, we must expect that there will 
be no possibility for a transition between two stationary states for which

— n" = r”, . . . . n' — n'' = rf. If the coefficient in question is equal to zero, 
independent of the values of the Vs, only for the displacement of the particles in 
a certain given direction, we must expect that a transition for which n\ — n" = r", 
.... n« — n's = r° will give rise to a radiation polarised perpendicular to this direc
tion. An important application of this consideration may be made to systems pos
sessing an axis of symmetry, as for instance the systems discussed in § 3 (and in 
§ 4). For these systems the motion of the electron may, as it is directly seen from 
some simple general considerations given by Bohr1), be resolved in a number of 
linear harmonic vibrations of frequencies r, eqr2it>2 parallel to the axis of 
symmetry, and of a number of circular harmonic rotations of frequencies 
t2m2-¡-o/3 perpendicular to this axis. We must therefore expect that only such 
transitions will be possible for which n3 remains unaltered, giving rise to an emission 
of light polarised parallel to the axis, and such for which n3 decreases or increases 
by one unit, giving rise to an emission of light which is circularly polarised 
perpendicular to the axis. Since for the systems under consideration will 
represent the angular momentum of the electron round the axis of symmetry, we 
see that during transitions of the first kind this angular momentum remains 
unaltered, while for transitions of the second kind it decreases or increases by -y .2)

While these considerations in many cases allow us to draw definite conclusions 
as regards the polarisation with which the different lines of the spectrum of an 
atomic system are emitted, we meet, however, with a very difficult problem if we 
ask for a closer estimate of the intensity with which a spectral line, correspond
ing to a possible transition between two stationary states characterised by values 
for the n’s in (99) which are not large, is emitted. In fact, this intensity will in 
the first place depend on the a-priori probability A'„ for the spontaneous occurrence 
of the transition in question. Although, of course, we must claim that the proba
bility of spontaneous transition between two given stales depends on the mechani
cal properties of the system and on the two sets of numbers n\, . . . n's and n”, . . . n" 
characterising these states, we cannot expect to obtain an exact expression for this 
probability which depends in a simple way on the amplitudes of the harmonic 
vibrations of frequency (n'— n")ûq4- . . . (n's—n'sf)a)s in the motion in these states; 
just as it is clearly impossible to express the frequency of the emitted radiation

’) loc. cit. Part I, p. 33.
2) Compare in this connection Bohr (loc. cit. Part I, p. 34), who has pointed out that a considera

tion of conservation of angular momentum, which takes into account the amount of angular momentum 
present in the electromagnetic radiation emitted during a transition, gives a convincing support of the 
assumption that the angular momentum of the system round the axis cannot change by more than k/2^- 
Compare also A. Rubinowicz (Phys Zeitschr. XIX, p. 441, p. 465 (1918)), who by a similar consideration 
of conservation of angular momentum has independently arrived at some of the conclusions drawn by 
Bohr as regards the spectrum of atomic systems possessing an axis of symmetry. 



330 46

in a simple way in terms of the values of this frequency in the two states. With 
reference, however, to the fact, that it is possible, as shown in the preceding, to 
represent the frequency y of the emitted radiation in a simple way as the mean 
value of the mentioned frequency, taken over the continuous multitude of mechani
cally possible stales characterised by = n'i'4“ x(n¿.— /?") (7c — 1,2... .$•) where z 
lakes all values between 0 and 1, the expectation lies at hand that it might also 
be possible to obtain an expression for the probability in question by comparing 
the emitted radiation with the intensity of the radiation emitted on ordinary 
electrodynamics by an electron performing a simple harmonic vibration which 
may be represented by

7 = Ceos 2 7 vi, (108)

where C is equal to a suitably chosen mean value of the amplitude C; of the 
vibration of frequency (/q — zi") a,T(n'— zz'')o¿, occurring in the motion in 
the different states characterised by different values for x. ’) The value for the pro
bability A', for the spontaneous occurrence of the transition in question would then 
be given by The exact determination of A',, however, is at present a quite un
solved problem which involves fundamental difficulties. But, even if the exact value 
of A'„ was known, a calculation of the intensities would moreover require the know
ledge of the number a' of atoms which in the initial stale are present in the vacuum 
tube; the determination of this number, which will obviously vary to a large extent 
with the experimental conditions (pressure, voltage, etc.), is in general a difficult 
problem in itself.

1 Among the possible expressions for such a mean value, an expression of the type

c = log C/tf-I (I09)
offers itself naturally, since, with this definition of C, the expression of which (108 forms the
real part, appears directly as the logarithmic mean value of the expression

C; e 2 7T?: ( («' - -»") .... («' - UJs}t,

the real part of which represents the corresponding harmonic vibration which occurs in the motion of 
the system in the states characterised by the different values of x. It follows from the well known 
properties of such logarithmic mean values that it makes no difference whether we take the mean 
values of the squares of the amplitudes or the squares of their mean values. It may moreover be 
remarked that in the special case where the relative intensities of the components into which a given 
hydrogen line is split up are asked for, — and in which, as mentioned in the text below, it is possible to 
obtain a direct test for a formula representing a theoretical estimate of the relative values for the a-priori 
probabilities of transition between the different pairs of stationary states, — the above mean value pos
sesses the advantage that we shall obtain the same relative values for the estimate for these probabilities, 
whether for C we take the amplitude (or the „relative“ amplitude introduced on page 52) of the vibra
tion itself or the “amplitude” of the corresponding velocity, or acceleration; a point the importance of 
which will be understood when it is remembered how small our actual knowledge of the mechanism 
of radiation is. In § 8, however, it will be shown, in connection with the theory of the Zeeman effect, 
that mean values of the type C‘, as defined by (109), can never represent an exact expression for the 
relative intensities of the components, because they do not satisfy the fundamental condition that 
small external forces can only produce small changes in the intensity distribution of spectral lines.
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There exists, however, one case in which it seems possible on the basis of 
the above considerations to obtain direct information about the relative intensities 
with which different spectral lines are emitted, viz. if we consider the components 
in which a spectral line, emitted by an atomic system which is degenerate, is split 
u]) due to the influence of some agency on the atom. Examples are afforded by 
the fine structure of the hydrogen lines which is due to the influence of the 
relativity modifications, and by the Stark effect of the hydrogen lines which is due 
to the influence of an external homogeneous electric field of force on the 
hydrogen atom. In order to fix the ideas let us consider especially the case of the 
Stark effect. Under the influence of the external force a given hydrogen line (zz'-*zz") 
will be split up in a number of components, corresponding to transitions for which 
the initial slates will be characterised by different combinations zz, = n\, n2 = n'i{, 
n.t — n'3 (zz'x-p zz'2-1 z?'„ = n) and the final stales by corresponding combinations 
zz", zz", zz" (zz';-r zz'2'+zz" = zz"). Since the values of the total energy in the different 
initial states are approximately equal, it seems in the first place allowable to con
clude that in the vacuum tube the numbers of atoms present in these 
states will be approximately p ropo rtio n a 1 to the different a-priori 
probabilities of these states. In fact, this assumption presents itself natural
ly, in analogy with the, corresponding property of a statistical distribution of a large 
number of atoms which is in temperature equilibrium; although of course the state 
of equilibrium in the luminescent vacuum tube will, as mentioned, not in general 
be a temperature equilibrium. As it will be seen in the following sections, the 
assumption in question seems to be confirmed in a general way by the observations 
In the case of the Stark effect the atom forms a non-degenerate conditionally perio
dic system, for which the different stationary states will be a-priori equally probable 
(see Bohr, loc. cil. Part II, p. 25), and we shall consequently expect that the different 
initial states zz',, zz'2, zz'3 are of approximately equal occurrence in the luminous gas.

Moreover the different frequencies (zz)— zz)')aq-y . • ■ ('ú— zz")íu3 occurring in 
the motion of the electron in the different corresponding initial slates, as well as 
in the different final states, (and also in the different states characterised by 
I, = h{ n¿ + Z( n'K — nii)} (k = 1,2,3) for a same value of x ) are approximately the 
same, and equal to (zz' n")co, so that the relative intensities with which, on ordi
nary electrodynamics, radiations of these frequencies would be emitted from these 
states are simply proportional to the squares of the amplitudes C of the harmonic 
vibrations of these frequencies, occurring in the motion in these states.

We are therefore led to expect that it will be possible to form an idea 
of the relative intensities with which the different components 
of the Stark effect will appear, by comparing the intensity of each 
component with the values of the squares of the amplitudes of the 
corresponding harmonic vibrations occurring in the motion of the 
system in the initial state and in the final state and in the mechani
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c a 11 y possible states lying “between” these states. In § 6 the values of these 
squares in the initial states and in the final states will be calculated on the basis 
of the expressions for the amplitudes deduced in § 3, and it will be shown that, 
simply from a consideration of these values, it is actually possible to account in 
main features for the intensities of the different components observed by Stark. 
In § 7 the same method will be applied in order to estimate the relative intensities 
of the fine structure components of the hydrogen lines, in which case the above 
consideration needs a slight modification, due to the fact that the a-priori proba
bilities for the different stationary states are no more equal to each other. It must, 
however, be emphasised already here that the method in question can only be 
expected to give a rather rough estimate of the relative intensities, especially when 
the n’s involved in the different stationary states are very small numbers. In the 
theory of the Stark effect we shall, for instance, meet with transitions for which 
the amplitudes of the corresponding frequency are equal to zero in the initial 
state, as well as in the final state, and where, as a matter of fact, the intensity of 
the corresponding component is different from zero. A closer discussion of these 
transitions shows, however, that the value of the amplitude of the vibration of 
corresponding frequency in the mechanically possible states lying “between” the 
initial state and the final state is different from zero for these transitions. In order 
to account for the finer details of the observations, we are therefore naturally 
induced to try to improve the estimate of the relative intensities of the components 
by comparing these intensities, not with the squares of the corresponding ampli
tudes in the initial states and final states only, but with some suitable mean value 
of these squares taken over the mechanical states which lie between these states, and 
which are characterised by the different values of z between 0 and 1. Especially the 
logarithmic mean value of these squares, of the type defined by (109) in the 
note on page 46, would seem to lend itself naturally to such an attempt. A compu
tation of these logarithmic mean values, however, would involve laborious numeri
cal calculations and has not been given in the present paper, because we cannot 
expect, as mentioned in the note referred to, to obtain in this way an exact 
determination of the relative intensities (compare page 100) and also because, at 
the present state of the theory, the agreement with the observations obtained by 
the simpler calculations in this paper may be considered as very satisfactory.

Although we have thus met with a case where Bohr’s considerations about 
the connection between the quantum theory and the ordinary electrodynamical 
theory of radiation may be directly applied to estimate the relative intensities 
of spectral lines, it must be remembered that this estimate is based on the neces
sary continuous connection between the unknown laws governing the intensities 
with which spectral lines are emitted in the region where the n’s in (99) are small 
and the law which governs these intensities in the region of very large n’s. The 
estimate in question must consequently be expected to become the more uncertain 
the smaller the numbers n,, ... nÄ are which characterise the stationary states 



49 333

involved in the transitions. It is therefore of great importance that, just in the case 
of spectral lines which are split up in components, it is possible to obtain some 
direct information as regards the relative intensities of these components in a way 
which is quite independent of the preceding considerations. In fact, a simple 
consideration of continuity or, as Bohr calls it, a consideration of the necessary 
“stability of spectral phenomena”1), assures us at once that the intensities of the 
polarised components in which an unpolarised spectral line splits up under the 
influence of small external forces will be such, that the ensemble of all compo
nents together will show no characteristic polarisation in any direc
tion, if small quantities proportional to the intensity of the external forces are 
neglected. If we consider for instance the Stark effect or the Zeeman effect of the 
hydrogen lines, viewed in a direction perpendicular to that of the electric or of 
the magnetic field, the sum of the intensities of the components polarised parallel 
to the field must be equal to the sum of the intensities of the components polarised 
perpendicular to the field. The information about the intensities given by this state
ment becomes more valuable the smaller the number is of the components in 
which the line is split up, but in general this occurs just in the cases where the 
n’s involved in the different transitions are small numbers and where consequently 
the estimate of the a-priori probabilities of spontaneous transitions, based on a 
consideration of the amplitudes of the harmonic vibrations in which the motion of 
the atom may be resolved, becomes especially uncertain.

§ 6. The Stark effect of the hydrogen lines.
In this section we will discuss in detail the estimate for the relative intensities 

of the components of the Stark effect of the hydrogen lines, which can be obtained 
from the calculations in § 3 on the basis of the considerations given in § 5, and it 
will be shown that it is possible to account in a convincing way for the relative 
intensities of the components which have been observed by Stark2) in the case of 
the hydrogen lines Ha, H,3, Hr and H¿.

, If the intensity of the electric field acting on the atoms is so large that the 
relativity modifications in the laws of mechanics governing the motion of the 
electron may be neglected, the hydrogen atom will form a mechanical system 
which allows of separation of variables in parabolic coordinates (Epstein). This 
separation has been performed in § 3 and, as mentioned in the preceding section, 
the stationary states of the atom will be fixed by the three conditions

= nrh, I.2 = n2h, I3 = n3h, (110)
’) Bohr, loc. cit. Part II, p. 85.
-) J. Stark, Elektrische Spektralanalyse chemischer Atome, Leipzig, Hirze) (1914). This monograph 

contains a survey of Stark’s investigations on the effect of an electric field on spectral lines until. 1914
D. K. D. Vidensk. Selsk. Skr., naturvidensk. og mathem. Afd., 8. Række, III. 3. 43 
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where lv A and /3 are the quantities defined by (45), and where zq, zz2 and zz3 are 
positive integers. The different stationary states, characterised by different combina
tions of the zz’s, will in the following be denoted by the symbol (nn zz2, zz3); they 
are, as mentioned, a-priori equally probable, but it must be kept in mind that, 
while zz1 and n2 may assume the values 0, 1, 2, 3 . zz3 can only assume one of 
the values 1, 2, 3, 4 ... . In fact, it was pointed out by Bohr that states correspond
ing to zz.} = 0 cannot represent possible stationary states of the atom because there 
is an essential singularity involved in the motion in these states1).

’) Bohr, loc. cit. Part II, p. 75. In this connection it may be observed that in states for which 
n3 — 0 the motion of the electron would take place in a plane, and that, if the relativity modifications are 
neglected, the angular momentum of the electron round the nucleus would in the course of the motion 
become equal to zero at regular intervals and change its sign, so that in the course of time the elec
tron would in general collide with the nucleus. On the other hand, if the relativity modifications, are 
taken into account, the perturbing influence of these modifications would become very large and of the 
same order of magnitude as the influence of the electric field when the angular momentum approaches 
to zero. As will be shown in the paper mentioned in the beginning of § 4, the value of this angular 
momentum will never pass through zero and the motion of the electron would in the states in ques
tion be essentially different from that in the non-relativity case. It was pointed out by Bohr, however, 
that this circumstance does not, from the point of view of the quantum theory, remove the singular 
character of these states, which compels us to exclude them from the ensemble of possible stationary states.

2) See P. Epstein, Ann. d. Phys. L., p. 489 (1916), K. Schwarzschild, Berk Ber. p. 548 (1916). The
correction for the finite mass of the nucleus in the expression for v will, according to what has been
said in § 5 on page 40, be taken into account by simply replacing the above expression for y() by that 
which is given in formula (105).

The value of the total energy in the stationary states will be obtained by 
introducing (110) in the expression (46) for the total energy of the system. The 
frequency v of the radiation emitted during a transition between an initial state 
(zz', n'2, n's) and a final state (zz", n", zz") — such a transition will in the following 
be denoted by the symbol (zz), zz'3, zz'3zz", zz", zz") — will then, according to (1),
be given by

4
3 hF

87r2Nem ’
where

2 N'2 e4 m / 1 1 \ J = zj' (zz' — zz') — zz" (zz" — zz")»0 = h' \zz"3 zz'2/’
and where

n' = zz' I rz'3 zz3, zz" = zz"H- n"4-zz"

(Hl)

The expression for v0 coincides with formula (105) holding lor the frequencies ol 
the spectral lines emitted by the simplified hydrogen atom, when the mass ol the 
nucleus is considered as infinite. The additional term in the expression for v is pro
portional to the intensity F of the electric force and allows us to calculate the magni
tudes of the displacements from the position of the original line of the different 
components in which this line splits up under the influence of the electric force2). 
As shown by Epstein and by Schwarzschild, formula (111) is in excellent agree
ment with the frequencies of the different components of the hydrogen lines ob-
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served by Stark. Thus the displacements of these components from lhe original 
positions of the lines are all entire multipla of the quantity which *s the
same for all lines of the spectrum, and which is proportional to the intensity of 
the electric force. Moreover the Stark effect of the hydrogen lines was found to be 
symmetrical as regards the displacements as well as the intensities of the compo
nents. This agrees with the fact that to each component on one side of the position 
of the undisplaced line there will correspond one on the other side which is ob
tained by interchanging the values of n\ and u2, as well as of n” and n", and for 
which the value of J will be numerically equal to that for the first component 
but of opposite sign. That two such components will also appear with the same 
intensity is directly explained by observing that lhe motion of the electron in two 
states of the atom for which 73 and 7} 7., are the same, but for which the value
of 7X in the one is equal to that of 72 in the other, will be symmetrical so that the 
a-priori probabilities of spontaneous transition corresponding to the two compo
nents must be expected to be equal1).

Looking apart from lhe symmetry of lhe effect, the relative intensities with 
which the components appear on Stark’s photographs vary in an irregular way 
from component to component, but are independent of the intensity of lhe electric 
force. Further, as regards the polarisation, Stark found that, when viewed in a 
direction perpendicular to that of the electric field, the lines show a number of 
components polarised parallel and a number of components polarised perpendicular 
to the direction of the field. When viewed in a direction parallel to the field, only 
lhe latter components appeared, with the same intensity distribution, but without 
showing characteristic polarisation. It was pointed out by Epstein that lhe polarisa
tion of the components obeys lhe rule, thal the components which, according lo 
(111), would correspond to transitions for which n'3—n" is an even number are 
polarised parallel to the direction of lhe field, while components, which would 
correspond to transitions for which — n" is uneven, are polarised perpendicular 
to the field. On Bohr’s theory Ibis rule receives an immediate explanation because 
according to this theory, as il has been discussed on page 45, only two kinds of

’) Here we have looked apart from the interesting dissymmetry in the intensities of the compo
nents of the hydrogen lines, which under certain experimental conditions appears in Stark’s observat
ions, and which consists therein that the components on the red side of the position of the original 
line appear more, or less, intense than those on the blue side according as the direction of the electric 
field is the same as, or the opposite of, the direction of propagation of the positive rays by means of 
which the hydrogen lines are excited (see J. Stark, loc. cit. p. 40). This dissymmetry affords, as pointed 
out by Bohr (Phil Mag. XXX, p. 404 (1915)), an interesting support for the general principles underlying 
the application of relation (1), because it indicates directly that the different components correspond to 
entirely different processes of radiation the relative occurrence of which may depend on the experimen
tal conditions. Thus the dissymmetry in question must be ascribed to the fact that, under the men
tioned conditions, the number of atoms in the vacuum tube present in a state (a, b, c) and in a state 
(Z>, a, c) will no more be equal to each other but will depend on the orientation of the electric field 
relative to the direction of the positive rays.

43*
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transitions will be possible, viz. transitions for which n'3 — if = 0 giving rise to 
radiation polarised parallel to the field, and transitions for which if — if = ¿ 1 
giving rise to radiation polarised circularly in a plane perpendicular to the field.1) 
The components corresponding to the latter transitions will, however, appear as 
unpolarised when viewed parallel to the field because, due to the symmetry of the 
atom round the axis of the field, the numbers of the transitions, corresponding to 
such a component, which give rise to light polarised circularly in one direction 
and in the opposite direction, will in the mean be the same.

In order to discuss the intensities, we have in the following given tables 
for the estimate of the relative intensities of the Stark effect components of the 
hydrogen lines Ha, Hp PL., Rf, as it can be obtained by the method exposed in § 5.

In the first column the different possible transitions between two stationary 
states are characterised by their symbols (/?', if, if-*n", if, n"). On account of the 
symmetry of the Stark effect we have only given those transitions which give rise 
to components lying on one side of the undisplaced line (J >0). Transitions which 
correspond to the same value of J and which therefore contribute to the same 
component in the observed effect arc collected by brackets. As regards the 
stationary states involved in these transitions we have, according to the above, 
assumed that no stationary states exist for which n3 — 0. Each table is divided 
into two parts, the first containing the transitions for which if—if = 0, corres
ponding to “parallel” components, the second containing the transitions for which 
if — n3 = ± 1, corresponding to “perpendicular” components.

The second column contains the value of J = n'(if — if)—n"(jf—if), which, 
as seen from (111), determines the displacement of the component under consider
ation from the undisplaced line; the third, fourth and fifth columns contain the 
values of r, = zj't— if, z2 = if—if, r3 = if— if.

The sixth and seventh columns contain the values R' and R" of the “relative 
amplitudes” of the harmonic vibrations of frequency Tj r2 -k r3 w3, occurring 
in the motion in the initial and in the final state respectively; where by 
relative amplitude is understood the ratio of the amplitude of this vibration to the 
half major axis of the Keplerian ellipse which the electron at any moment may be 
considered to describe. This half major axis remains constant during the motion 
and is equal to the value for a,, given by (102), i. e. equal to the quantity xP occur
ring in the formulae (70) and (72). The expressions for the values of the relative 
amplitudes of the linear vibrations parallel to the field and of the circular vibrat
ions perpendicular to the field in a given stationary state, characterised by a certain 
combination of the n’s, are directly obtained by introducing (110) in the formulae 
(70) which represent the motion of the electron parallel and perpendicular to the 
direction of the field. In this way we find, denoting, as in § 2, the Bessel coeffi
cient of order p and of argument p by Jp(p), and its derívate with respect to p 
by ffp),

x) N. Bohr, toc. cit. Part II, p. 77.
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^(riWl + r2Wá) = <72./r1(T<T1).//T2(r<72) — íT1-/'r1(ríT1).7T2(T<T2)}

2 r (H2)
= - { ^(wj Jr, (r<72) — <72Jr2 + i(r<r2) — Jq-i(r<7j) Jr2(r<r2) }

X
and i

Ä fr1w1 + r2ö>2 4-û>3) = , Via^a J’i(ríTi) ^2(^2) — íiír/~i +i(r<Ti) ^2 + 1 (^2)}

respectively, where

^2 = ^n2(n2 + n3L

(114)

If one of the quantities nt and n2, say n2, becomes equal to zero the expressi
ons for the amplitudes become much simpler. The character of the motion in the 
corresponding states of the atom has been considered in detail in § 3 on page 25, 
where it was seen that the motion of the electron in these states may be resolved 
in a number of linear vibrations of frequencies q aq parallel to the field and a 
number of circular harmonic rotations of frequencies qwj-|-c»s perpendicular to 
the field, so that the amplitudes will be equal to zero unless t2 = 0. For the ex
pressions for the relative amplitudes of the vibrations of frequencies t1íw1 and 
t1ûj14-<u3, we find from (72) and (110)

7?(q oq) == “ q./^irq) = J Jr - 1 (rq) — Jr + 1 (rq ) } , (115)
T X

7?^«,, + ^) = (J 01«)

where = p , r = r, — r3, n = n, + n3, (n. = r2 — 0).

In the formulae (113) and (116) holding for the relative amplitudes of the 
circular rotations, r3 is considered to be equal to }-- 1. In the case where q, = — 1, 
however, i. e. for transitions during which the angular momentum of the electron 
round the axis of the system increases by ^2/2 —, we may obviously apply the same 
formulae if only we reverse the sign in the values for rx and r2. For the relative 
amplitudes of the linear vibrations we have both in (112) and in (115) given two 
expressions, the former of which is more symmetrical, while the latter lends itsell 
better to numerical calculations as long as no tables of the functions Tp(p) are 
at hand.

The eigth and ninth columns in the tables contain the squares of and It", 
which quantities, according to the considerations in § 5, should be expected to 
atford an estimate for the relative intensities of the different components. Here it
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may be remarked that the introduction of the values of the “relative amplitudes” 
instead of the values of these amplitudes themselves offers, with reference to the 
considerations just mentioned, a great advantage. Thus it will be remembered that, 
in the case of the estimate of the intensity of a given component, we have beforehand 
no direct information as regards the relative importance of the values of the corres
ponding amplitude in the initial state and in the final state. For this reason it is of 
importance that in our tables the amplitudes should be characterised by numbers 
which for the initial states and for the final states are of the same order of magni
tude, but this is just obtained by the introduction of the relative amplitudes.

Finally the tenth column contains the experimental values for the intensities 
published by Stark in his most recent paper on the Stark effect of the hydrogen lines 1). 
These values refer to the relative intensities of the components of same polarisation 
belonging to one and the same line, and are according to Stark’s statement rather 
uncertain on account of the well known difficulties involved in the determination of 
these intensities from the density of the image of the components (“Schwärzung”) on 
the photographic plates. A reproduction of Stark’s photographs of H,;, Hr, H¿ will be 
found on Plate II, Fig. 5.2 * * *) For the sake of completeness we have, for the lines Hß, 
llr and Hj, in an eleventh and twelfth column added the values for the relative densities 
of the images of the components on the photographic plate, given by Stark in bis 
above cited monograph; the densities of the components on the red side of the 
undisplaced line are given in the eleventh column, those on the blue side in the 
twelfth column.

1) J. Stark, Ann. d. Phys. XLVI1I, p. 193 (1915).
2) J. Stark, Elektrische Spektralanalyse chemischer Atonie, Tafel IH. lig 1- The arrows on the

photograph of indicate the position of the unreal lines (“Geister”) which, on account of the imperfec
tion of the grating, accompany the image of a component situated at the place of the original line.
The arrow on the photograph of Hy indicates the position of the mercury line 4359 A, which, as it is
seen, appears with considerable intensity.

At the head of each table we have, for the sake of orientation, indicated the 
magnitude in Ångstrom units of the displacement corresponding to J -= 1 for a 
field strength of 100.000 Volt/cM. These values are calculated by means of the 
following relation, which is directly found from (111),

¿4 = displ. ( J = 1; 100.000 Volt/cM) = 10-8 X" ov = 10 8 = at6’41'10
* ' c c 8r Nein 300 N

where z represents the wave length of the spectral line, expressed in Angström units.
When considering the tables I, II, III and IV it will in the first place be observed, 

that for most transitions the value of R" is equal to zero. This is due to the fact 
that to the stationary stale of the simplified hydrogen atom characterised by n = 2, 
which forms the final stale for the transitions giving rise to the lines of the Bal
mer series, there corresponds, in case an electric field is applied, only three statio
nary states, viz. [002], [101] and [011], and that the motion of the electron in these
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states is of an especially simple character. Thus in the state [002] the orbit of the 
electron is circular and perpendicular to the direction of the field, and the motion 
contains only the frequency while in the slates [101] and [Oil] the motion contains 
only the frequencies roq, t—• 1 co1 + <w3 and rw2, t— 1 co2-\- a>3 respectively. As a conse
quence of this there exists for each of the lines considered in the tables only one paral
lel component and one perpendicular component on each side of the undisplaced line 
for which the values of R'2 and R"2 are both different from zero, while moreover 
there appears in Ha at the place of the undisplaced line a perpendicular compo
nent, corresponding to a transition between two circular orbits (003-> 002), for 
which R'2 and R"2 have the maximum value 1. Just these components are 
seen generally to be the strongest in the observations on the Stark 
effect. From this we may conclude that, when estimating the intensities by the 
present method, the amplitudes in the final states play a part no less important than 
those in the initial states, in agreement with what beforehand might be expected from 
the principles on which this method is based. Considering further the other compo
nents for which R" is equal to zero, it will be seen from the tables that the values 
of R'2 give in general a good picture of the observed intensities of these compo
nents. For instance for any two components of the same polarisation of a given line 
the component of larger intensity corresponds generally to that for which R’2 has 
the larger value. In order to facilitate a comparison between the theory and the 
experiments we have in fig. 1, 2, 3 on Plate I and fig. 4 on Plate II represented 
schematically the estimate for the theoretical intensities, in such a way that the 
lengths of the lines representing the different components are taken proportional to 
the values of R'2 R"2. At the same time we have in these figures reproduced the
schemes, given by Stark1), representing the result of his above mentioned recent

Table I.

displ. (J = 1 ; 100 000 Volt/cM) = 2,8 Â
11 6562,8 A (3-> 2).

Transition J T1 r2 ^3 n'
1

R" R

Ill -> Oil 2 1
1 0 0 .46 0 .21 0

102 002 3 1 0 0 .51 0 .26 0
Par. 201 -> 101 4 1 0 0 .62 .57 .38 .33

201 -> 011 8 o —1 0 0 0 0 0

003 -» 002 1 0 0 0 1 1.00 1.00 1.00 1.00
111 -» 002 / 0 4 1 —1 .26 0 .07 0

Perp. 102 -> 101 1 0 0 1 .75 .62 .56 .39
102 -> Oil 5 1 —1 1 0 0 0 0
201 -> 002 6 2 2 -1 .05 0 .00 0

int. obs.

) Ann. d. Phys. XLVlIt, p. 205 (1915).
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Table IL
Hæ, 4861.3 Å (4—>2).

dispi. (d=l; 100 000 Volt/cM) — 1,52 Á

Transition J U 72 T3 R' R" R’2 R"2 int. obs. Red Blue

112 -> 002 0 1 1 0 0 0 0 0 1,4 0,10
211 -» 101 2 1 1 0 .02 0 •OOO5 0 1,2 0,22 0,16

(4) 1 0,26 0,36
Par. 211 -» OU 6 2 0 0 .15 0 .021 0 4,8 1,00 M2

202 -> 002 8 2 0 0 .17 0 .o3O 0 9,1 1,40 1,73
301 -> 101 10 2 0 0 .21 .17 .045 ,o3O 11,5 1,63 1,88

(12) 1
301 -> 011 14 3 —1 0 0 0 0 0

(0) 1,4 0,62
112 -» OU 2 1 0 1 .12 0 .014 0 3,3 1,08 1,08
103 -> 002 ) 4 1 0 1 .19 0 .036 0
211 -> 002 J 4 2 1 —1 .06 0 .oO4 0 12,6 2,03 2,03

Perp.x 202 -> 101 6 1 0 1 .19 .19 .o37 .037 9,7 1,64 1,78
(8) 1,3

202 -> OU 10 2 —1 1 o 0 0 0 1,1 0,34? 0,45?
301 -» 002 12 3 0 —1 .02 0 .OOO5 0 1 0,27? 0,25?

Table III.
7/^, 4340,5 Å (5->2).

dispi. (d = l; 100 000 Volt/cM) = 1,21 Å

Transition J U T2 T8 R R" R'2 R"2 int. obs. Red Blue

221 ou 2 9 1 0 ,o33 0 .0011 0 1,6 0,58 0,58
212 002 5 2 1 0 o22 0 .ooO5 0 1,5 0,58 0,52
311 —> 101 8 2 1 0 .013 0 .00I6 0 1 0,19? 0,27?

Par. 311 —> OU 12 3 0 0 ,o74 0 ,oo55 0 2,0 0,67 0,91
302 -9- 002 15 3 0 0 o93 0 .0086 0 7,2 1,56 1,70
401 -> 101 18 3 0 0 .112 .080 .0125 .oo63 10,8 1,76 1,78
401 -* ou 22 4 —1 0 0 0 0 0 1?

113 002 | 0 1 1 1 .o65 0 .oo41 0
221 002 1 0 2 2 —1 .o31 0 .ooO9 0 ; î,2 2, 18
212 -> 101 3 1 1 1 .057 0 .oo32 0 3,2 1,56 1,56
212 -* OU 7 2 0 1 .o45 0 .oo20 0 1,2 0,74 0,76

Perp. 203 -> 002 1 10 2 0 1 .085 0 .oo72 0
311 -> 0021 10 3 1 —1 .025 0 .00O6 0 / 4,3 1,70 1,78
302 —> 101 13 2 0 1 .088 .o89 .oo77 .080 0,1 1,90 1,88
302 —> ou 17 3 — 1 1 0 0 0 0 1,1 1,51?
401 -> 002 1 20 4 0 -1 .014 0 .0002 0 1 0,49 1,51?
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Table IV.
Hå, 4101,7 Á (6 -> 2).

displ. (J = l; 100 00Ü Volt,cM) = 1,08 A

T2 r8 R B" B"2 int. obs. Red Blue

2 2 0 0 0 0 0
2 2 0 .008 0 ooOl 0 1 0,67 0,67
3 1 0 .027 0 .0007 0 1,2 0,85 0,81
3 ] 0 ,o2O 0 ,ooO4 0 1,5 0,93 1,01
3 1 0 .016 0 .oo03 0 1 2 0,71 0,92
4 0 0 .045 0 .oo2O (J 1,1 0,80 0,71
4 0 0 ,o6O () .oo36 0 2,8 1,42 1,37
4 0 0 .066 .o43 .oo44 .0019 7,2 1,80 2,00
5 —1 0 0 0 0 0 K?)

9 1 1 ,o28 0 .ooOS 0 1,3 0,92 0,89
o 1 1 .o36 0 .0013 0 1 39 15° 1 5°
3 2 —1 .ol7 0 .0003 0
9 1 1 .o33 0 .0011 0 2,1 1,23 1 99

3 0 1 .023 0 .ooO5 0 1 0,71 0,60
3 0 1 ,o49 0 .oo24 0 ! 2,0 1.12 1.11
4 1 —1 .013 () .0002 0 j
<> o 0 1 ,o51 .o49 .oo26 ,oo24 2,4 1,30 1,30
4 1 1 0 0 0 0 1,3 0,89 (?) 0,85(?)
5 0 -1 .OO6 0 .00OO5 0 it?) 0,73 (?) 0,67(?)

measurements on the intensities of the components. Components the appearance oi 
which was regarded by Stark as questionable are indicated by a ? sign.

On the whole it will be seen, that it is pqssible on Bohr’s theory to account 
in a convincing way for the intensities of the Stark effect components. Before dis
cussing in detail each of the lines observed by Stark, however, it may be useful 
to insert some general remarks to which a closer consideration of the preceding 
tables naturally gives rise.

In the first place it will be observed that the agreement between theory and 
experiments revealed by these tables is intimately connected with the circumstance 
that we have disregarded stationary states for which n3 = 0, i. e. for which the 
angular momentum of the electron round an axis through the nucleus parallel 
to the electric force would be equal to zero (compare page 50). In fact, if such 
states were taken into account (it follows from what has been said in the note on 
page 50 that, due to the influence of the relativity modifications, the formulae 
(70) and (71) would not be applicable to the states in question) we should expecl 
the appearance of a number of additional components of rather strong intensities; 
the absence of such components may be considered as an experimental confirmat
ion of the non-existence of stationary states of the type under consideration. Further

D. K. D. Vidensk. Selsk. Skr., naturvidensk. og mathem. Afd., 8. Række, III. 3. 44 



342 58

il is of interest to notice that for a transition where one of the t’s is negative,'/. e. 
during which one of the n’s increases, the value of R' is always either very small 
or equal to zero, and that in agreement with this the corresponding component, if 
observed at all, is very weak1 2). It is easily seen that, from a mathematical point of 
view, the reason for the small values of R' in such cases lies in the circumstance 
that the coefficients Crv ... r.s in a convergent trigonometric series of the type (12) 
not only converge to zero when the numerical value .rx-|- ... rs of the sum of the 
r’s increases, but also when the sum zy ¡ "s of the numerical values of the 
fs increases, rx + .. . ts remaining constant.

*) It will be observed that the point under consideration has an interesting connection with 
Sommerfeld’s suggestion that only such transitions would be possible for which all n’s in (99) decrease 
or remain unaltered (hypothesis of the “Quantenungleichungen”. Compare A. Sommerfeld, Ann. d. Phys. 
LI p. 24 (1916). Compare also Epstein’s discussion of the intensities of the Stark effect components).

2) (202 -> Oil) in Hß; (302 —> Oil) in Hy; (402 —> Oil) in Lfj. Components corresponding to (401 — Oil)
in Hy and (501—011) in are recorded by Stark as questionable.

Special interest is afforded by transitions of the type (n), 0, n) —0, n2, n3). For 
these transitions both R' and R" are equal to zero, but, as mentioned in the former 
section, it is not allowable from this to conclude that such transitions are impossible, 
in intimate connection with the fact that the amplitude of the vibration of fre
quency n1cu1—n"a>2+(n'3—n”)ct)s, although equal to zero for the motion in the 
initial state and in the final state, is different from zero in the mechanically pos
sible states which lie “between” these states and which are characterised by Ir = 
Àn\, I2 = (1 —x)n" I., = n3 + Á(n3 — n3) (0 < x < 1). As seen from the tables 
weak components corresponding to transitions of the type under consideration seem 
actually to have been observed3).

For transitions of the type (a, a, c — Z), b, c) the amplitude of the vibration 
of frequency (a — Z>)wx-4-(a— Z?)w2 is equal to zero, not only in the initial state 
and in the final state, but also in the states characterised by /x = I2 — b -4- x(a— /?), 
I.j = c, due to the symmetry of the motion of a state for which It = I2. From this 
we may probably conclude that a transition of the type under consideration is 
impossible. In the tables we meet with two examples of such a transition, viz. 
(112 —>002) in Hß and (222 — 002) in Hs. In H¿ no corresponding component has 
been observed, but in Hß a weak component has been recorded. The appearance of 
this component, however, (if not due to “Gittergeister”) does not necessarily mean a 
disagreement with the theory, but is possibly due to the influence of the relativity 
modifications, as it will be discussed below.

When we consider the values of R' 3 and/?”3 as affording an estimate for the 
intensities of the components it must be remembered that in § 3 these values are 
calculated with neglect of small terms proportional to the first and higher powers 
of the electric force. It is easily seen, however, that we may look apart from these 
small terms, not only on account of the preliminary and approximative character of 
the discussion, but also because errors of at least the same order of magnitude are 
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already involved in the assumption that the different initial states, corresponding 
to one and the same stationary state of the simplified hydrogen atom, are of equal 
occurrence in the luminous gas. Moreover the uncertainty involved in the estimate of 
the intensities from the density of the image of the components on the photographic 
plate is so large that, with intensities of the electric force of the order of magni
tude used in Stark’s experiments, a possible dependency of the relative intensities 
of the components on the intensity of the force cannot be brought to light 
experimentally. It may in this connection be of interest to remark that for states 
for which /2 = 0 the amplitudes of the vibrations of frequency 4-r2oi2 
occurring in the motion of the system will, also if the first and higher powers of 
the electric force are taken into account, still be equal to zero if r2 is different from 
zero (compare § 3, page 25), while in general the amplitudes of the vibrations of 
frequency 4-t2íí>2, where rx = r2, will be small quantities proportional to the 
intensity of this force in states for which /x = I.,.

Another point which we have disregarded in the calculations in § 3 is 
the influence which the modifications in the laws of mechanics, claimed by the 
theory of relativity, have on the motion of the electron. This influence will be 
treated in detail in the paper mentioned in the beginning of § 4. Here it may only 
be remarked that this influence will consist partly in a small effect on the frequen
cies of the Stark effect components, partly in a small change in the relative inten
sities of these components. Thus the components will, on account of the relativity 
modifications, be displaced from the positions determined by (111) by small quantities 
of the same order as v~/c‘ where v is the velocity of the electron and c the velocity 
of light, in such a way that the symmetry of the Stark effect will be disturbed. 
The intensity of the electric field applied in Stark’s experiments is, however, so 
large that such a dissymmetry cannot be detected. Further the effect of the relativity 
modifications on the values of the amplitudes of the harmonic vibrations, in which 
the motion of the electron can be resolved, will consist in the addition of small 
terms of the same order as r'2/c2F. Especially, in a state of the atom for which 
/] = I2, the amplitudes of the vibrations of frequencies t2oj2, where rx = r.„
will no more be equal to zero but equal to a small quantity of this order1). 
Components corresponding to transitions of the type (a a c-* b b c) must therefore 
be expected to appear with an intensity of the same order as (y2/c2F)2. This might 
probably explain the appearance of the component corresponding to (112->002) in 
Hß, mentioned in the above; this explanation is seen to claim that the intensity 
of the component under consideration decreases for increasing intensity of the 
electric field3).

’) The appearance of these vibrations of new frequencies in the states under consideration is 
analogous to the appearance of vibrations with new frequencies and of amplitudes which are of the 
same order as Fc2/^ ¡n the problem treated in § 4.

On Stark’s photographs of the Stark effect of Hß for a field of 28 500 Volt/cM the relative 
intensity of this component seems actually to be much stronger than on the photograph corresponding 
to a field of 74 000 Volt.'cM.

44*
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In § 5 it has been mentioned that we possess, quite independent of the estimate 
which is based on the calculation of the amplitudes of the harmonic vibrations in 
which the motion may be resolved, another source of information about the inten
sities in the fact that the polarised components in which an unpolarised spectral 
line is split up will, when taken together, show no characteristic polarisation in 
any direction. This allows of an instructive application in case of the Stark effect 
of Ha. In fact, adding the values for R"2 and R"2 belonging to the parallel compo
nents, we get 1,70 and 0,66 respectively, while adding the R'-’s and R"2’s for the 
perpendicular components, we obtain 2,19 and 1,78. From this it follows that the 
intensities of the perpendicular components compared with those of the parallel 
components must, for the hydrogen line under consideration, be expected to be 
considerably smaller than it would follow from a direct comparison with the values 
of R'2 and R"2. Especially the component corresponding to a transition between 
two circular orbits perpendicular to the direction of the electric force, (003—> 002), 
will be much less intense than the values of R'2 and R"2 would indicate. In an 
even more striking way a consideration of this kind applies to the ultra-violet 
hydrogen line (2 1), for which the values of the n’s in the stationary states are
still smaller. Thus, under the influence of an electric field, this line will split up in 
two parallel symmetrical components of equal intensity, (101->001) and (011->001) 
(R' 2 = 0,33, R"2 = 0), and one perpendicular component (002->001 )(R'2 = 1, R" 2 = 1), 
and since the sum of the intensities of the former must be equal to the intensity of 
the latter, we see that the tendency for a transition between the two circular orbits 
[002] and [001] is again much less than it might have been expected from a direct 
consideration of the values of/?'2 and R"2. In the discussion in § 7 of the fine struc
ture and in § 8 of the Zeeman effect of the hydrogen lines we shall meet with 
analogous phenomena as regards the transitions between circular orbits. In the case 
of the Stark effect of Hfl, Hr and Hâ there are so many components that it is impos
sible to draw any further conclusion from the fact that the sum of the intensities 
of the parallel and of the circular components must be the same.

The fact that the tendency for a transition between two stationary states in 
which the electron describes a circular orbit is less than would be expected from 
the corresponding values of the R’s (R' = R” = 1) stands probably in close connec
tion with the fact, to be mentioned in the following (see page 61), that the ten
dency for other transitions to final states in which the electron describes a circular 
orbit (for such transitions R" is always equal to zero) is larger than would be 
expected from a consideration of the amplitudes of the corresponding harmonic 
vibration in the motion of the electron. Thus both these facts clearly indicate a 
tendency of the estimate of the probability of transition between two stationary 
states based on a consideration of the motion in these stales (and in the states 
lying “between”) — in contrast to other mechanical states of the system — to give 
exaggerated results in cases where these motions show singularities. On the whole it 
will be seen, from the following discussion, that the experiments on the Stark 
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effect not only afford a confirmation of the validity of the considerations in § 5, 
but also, in many respects, seem to give indications of the way in which these 
considerations may be extended.

Let us now discuss more closely each of the lines considered in the tables.
As regards Ha it is seen that the intensity of the undisplaced perpendicular 

component has been found to be the strongest of all components observed, in agree
ment with what should be expected from the large values of the corresponding 
quantities R2 and R'2. Further it is seen that the increase of the intensities of the 
parallel components in the direction of increasing J is very well illustrated by the 
values of the corresponding /?2’s. In addition to the components observed, the 
theory predicts the existence of weak parallel components at J = 4- 8 and of weak 
perpendicular components al J = 4- 5 and J = 4 6.

For Hß Stark records parallel as well as perpendicular components corres
ponding to J = 2, 4, 6, 8, 10 and 12, but, according to Stark’s own statement, it 
was very difficult to obtain good photographs of the Stark effect of this line, and 
a long exposure was necessary in order to obtain all components on the plate, 
lhese difficulties may account for the small discrepancies which seem to exist 
between the different observations on one hand and between these observations 
and the theory on the other hand, since during the long exposure any unreal 
component (“Geist”) due to the imperfection of the grating would have special 
opportunity to appear. Thus according to the theory no parallel components at 
J = 4 (and J — 12) and no perpendicular components at J = 0 and J = 8 
should appear, while Stark’s photographs would indicate the existence of such 
components. (It must, however, be remarked that, as seen from the table, the 
perpendicular component at J = 8 was not recorded in Stark’s publications before 
1915). Further the intensity of the perpendicular component J = 6 would according 
to the theory be stronger than the perpendicular component J = 4, in agreement 
with the photograph reproduced in fig. 5 on Plate II, but in disagreement with the 
values 9,7 and 12,6 for the relative intensities of these components appearing in the 10th 
column of Table II. The possibility for the appearance of a parallel component al 
J = 0 has been discussed on page 58 and 59. On the whole it will be seen that the 
agreement between the theory and the observations is satisfactory, and it seems 
probable that this agreement will be improved by further experiments.

In case of the Stark effect of H? it is seen that the agreement between the 
measurements and the estimate afforded by the theory is rather distinct for most 
components; but the perpendicular component at J = 0 (113^-002), and also the 
parallel component at J = 5 (212-> 002), appear undoubtedly stronger than we 
would expect from the corresponding values of R2. This may have connection with 
the fact that, for the corresponding transitions, the final states correspond to a 
circular orbit of the electron (compare page 60).

In case of the Stark effect of H> it is especially satisfactory that it has been 
possible to explain lhe non-appearance of a component corresponding to the trans-
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dispi. (J = 1 ; 100 000 V/cM) = 1,01 A

Table V.
He, 3971,2 Â (7^2).

Transition J T1 2
R R" K'-

331 -» Oil 2 3 o 0 .011 0 .ooOl 0
322 -> 002 7 3 o 0 .oO4 0 .ooOO 0
421 -> 101 12 o 2 0 .0005 0 .ooOO 0
421 Oil 16 4 1 0 .o2O 0 .oo04 0
412 -> 002 21 4 1 0 .016 0 .ooO3 0

Par. 511 -> 101 26 4 1 0 .oil O .ooO2 0

511 -> Oil 30 5 0 0 .o31 0 .oolO 0
502 -> 002 35 5 0 0 .o46 0 .oo21 0
601 -> 101 40 5 0 0 .049 .o26 ,oo24 .ooO7
601 -> Oil 44 6 -1 0 o 0 0 0

223 -> 002 1 o 2 2 1 .o22 0 ■ .oo05 0
331 -> 002 ) 0 3 3 —1 .012 0 .ooOl 0
322 -> 101 5 2 2 1 .019 0 .ooO4 0
322 -> on 9 Q O 1 1 .017 0 .ooO3 0

313 002 1 14 3 1 1 .023 0 .oo05 0
421 -> 002 / 14 4 2 —1 .oil 0 .ooOl 0

Perp. ; 412 -> 101 19 3 1 1 .022 0 .oo05 0
512 -> Oil 23 4 0 1 .014 0 ,ooO2 0

403 002 ) 28 4 0 1 .o33 0 .0011 0
511 -> 002 ) 28 5 1 —1 .oO8 0 .ooOl 0
502 -> 101 33 4 0 1 ,o33 ,o3O .0011 .ooOO
502 -> Oil 37 5 -1 1 0 0 0 0

601 -» 002 42 6 0 —1 .007 0 .00OO5 0

ition (222->002). (The relativity modifications would, as mentioned above, give rise 
to the appearance of this component with a small intensity inversely proportional 
to the square of the electric force, but it is easily seen that in the present case this 
effect must be expected to be much less than in the case of the analogous compo
nent in H/3.) A discrepancy between the values of A'- and the observed intensities 
seems to exist in the case of the weak parallel components. Thus the component at 
J = 12 appears stronger, while the component at J = 20 appears perhaps weaker 
than it would be expected from the corresponding values of R'2. Further the per
pendicular component at J = 6 appears stronger than we should expect from the 
table. These discrepancies are more or less analogous to those observed in case of 
H?-, thus the parallel component at J = 12 and the perpendicular component at 
J = 6 may be considered as analogous to the components J == 5 and J = 0 in 
II)', and correspond also to transitions for which the electron in the final state [002] 
describes a circular orbit. As regards the problems in question it may further 
be observed that, especially in the case of H? and the value n = 2 in the final 
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slates is so small in comparison with the valne of n in the initial states, that we 
cannot be astonished to find that a simple consideration of the values of the /?2’s 
in the stationary states is unable to account for the finer details ol the intensity 
distribution. In a case like this we are naturally induced to try to improve the esti
mate of the relative components by taking into account the values of the 7?’s in 
the states lying “between” the initial states and the final states (compare § 5, page 48); 
it may, however, be shown that by means of such a consideration the estimate 
would not be essentially modified as regards the intensities of components corres
ponding to transitions for which the electron in the final state describes a circular 
orbit ’).

In the preceding pages we have compared the theory with the observations on 
the Stark effect for the first four lines of the Balmer series. Owing to the agreement 
obtained it seems possible to predict the character of the Stark effect of other 
hydrogen lines which have not yet been experimentally investigated, and which 
correspond to other values of n' and n" in (111). In Table V we have therefore 
given a scheme of the values of the 7?-”s referring to the Stark effect components 
of H£ (7-> 2), and in fig. 6 on Plate II a schematical picture of the theoretical esti
mate of the intensities of these components, obtained, just as the analogous schemes 
in fig. 1 ... 4, by taking the lengths of the lines which represent the components 
proportional to R'2 -|- R"2. It must, however, he remarked that we may expect, in

’) This will be seen from a consideration of the following table in which, for the parallel compo
nents of Hfi, we have, besides the values of R in the initial state aud in the final state, given also the 
value Rm which R takes in the mechanical state lying in the middle between the initial and the final 
state ( 7; — 9 (nJ. _i_ n") h, (Jc — 1, 2, 3)). The values of Rm give no indications of a tendency for the 

component J = 12 to appear stronger than it would be expected from the values of R only. On the 
other hand the ratio of Rm to R’ is, for the component J = 20, much less than for the other compo
nents; this may be connected with the fact, mentioned in the text, that this component appears with

less intensity than was to be anticipated from the value of R‘. The value of Rm for the component 
J — 32, for which both R and R" are equal to zero, suggests that this component will appeal' with an 
intensity of the same order of magnitude as the component J = 4.

1
Transition J R' Rm

022 > (1. 1, 2) -> 002 0 0 0 0
321 (2, 1, 1) -> 101 4 oO8 oO9 0
321 -> (1.5,1.5,1) -> Oil 8 .<>27 .023 0

312 -> (1.5, 0.5, 2) -> 002 12 .o2O ,ol7 0
411 -» (2.5, 0.5, 1) -> 101 16 .<>16 ol4 0
111 (2, 1, 1) Oil 20 .o45 .o23 0
102 -> (2, 0, 2) -> 002 24 .<>60 .olG 0
501 (3. 0, 1) -» 101 28 ,o6G .o65 .043
501 -> (2 5,0.5, 1) -> Oil 32 0 ,oO7 0
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analogy with what was the case for Hr and H(> that this estimate will be exagger
ated in the case of components corresponding to transitions for which the electron in 
the final states describes a circular orbit (J = 7, J = 21; J = 0, J = 14), in 
such a way that these components will appear stronger than it would be expected 
from the values of R'2 in Table V.

The considerations in this chapter may naturally also be applied to the pro
blem of the Stark effect of the lines of the helium spectrum which correspond to 
N = 2 in (105). The experimental data for these lines, however, are not nearly so 
complete as for the hydrogen lines, only a few measurements referring to the strong 
visible line 4686 Å (4 -> 3) and to the ultra-violet lines 3203 Å (5 -» 3) and 2733 Å 
(6-* 3) having been published. When a strong electric field is applied we must 
expect that the lines in question will show a symmetrical resolution in a number 
of components the frequencies of which can be obtained from (111 ), and an estimate 
of the relative intensities of which can be obtained from the preceding considera
tions. Table VI contains the values of R'2 and R"2 corresponding to the components 
of the Stark effect of 4686 Å, while fig. 7 on Plate III contains the schematical pic
ture of the theoretical intensities. An observation on the Stark effect of the 4686 Å 
line in helium for a comparatively small electric field has been published by Evans 
and Croxson \) and is also contained in a recent paper by Nyquist2) on the effect of 
an electric field on the helium spectrum. The photographs of both these authors show 
distinctly that the resolution of the line in question is symmetrical, but the electric 
field used in their experiments was not strong enough to separate the different 
components the existence of which is claimed by the theory. Thus Evans and Croxson 
observed only a symmetrical broadening of the line, but in Nyquist’s photographs 
the line in question was resolved into an undisplaced perpendicular component 
and two symmetrical parallel components, which are indicated in fig. 7 by arrows. 
The distance of each of the latter from the undisplaced line amounted to 3,2 Å for a 
field of 100.000 Volt/cM (the largest intensity of the field in the experiments amounted 
to 38600 Volt/cM). This would correspond to a value of J equal to 3,2/0,71 = 4,5 
which value is seen to be in excellent agreement with the position of the centre of 
gravity to be expected for the strong theoretical parallel components at J = 2, 3, 4, 
5 and 6 (compare Table VI and fig. 7).

Measurements ou the effect of an electric field on the ultra violet helium 
lines 3203 Å (5 —> 3) and 2733 Å (6 -> 3) have recently been published by Stark3). 
Also in these experiments the intensity of the electric field, which amounted lo 
28500 Volt/cM, was not strong enough to obtain separately the different theoretical 
components. Tables VII and VIII, which are arranged in the same way as the pre
ceding tables, contain the values of R'2 and R"2 corresponding to these components, 
while fig. 8 and 9 on plate III contain a schematical picture of the results obtained in

’) E. J. Evans and C. Croxson, Phil. Mag. XXXII, p. 327 (1916).
-') H. Nyquist, Phys. Rev. X, p. 226 (1917).
3) J. Stark, Ann. d. Phys. LVI, p. 569 (1918).



65 349

dispi. (J = l; 100 000 Volt/cM) = 0,71 Å

Table VI.
Helium, 4686 Â (4-*3).

T ransition J T‘ T2 T3 R R' fí'-2

121 -> 021 2 1 0 0 .37 0 .14 0
112 -> 012 3 1 0 0 .42 0 .18 0
211 -> 111 I 4 1 0 0 .55 .46 .30 .21
103 -> 003 1 4 1 0 0 .45 0 .21 0
202 -> 102 5 1 0 0 .57 .50 .33 .25

Par. 301 201 6 1 0 0 .63 .62 .40 .39
211 -> 021 10 2 —1 0 .01 0 .00 0
202 -> 012 11 2 —1 0 0 0 0 0
301 111 12 2 -1 0 o .01 0 .00
301 021 18 3 . _2 0 0 0 0 0

004 -> 003 1 0 0 0 1 1,00 1,00 1,00 1,00
112 -> 111 0 0 0 1 .67 .58 .45 .33
112 -> 003 J 0 1 1 —1 .19 0 .04 0
103 ->102) 1 0 0 1 .81 .75 .66 .56
211 102 / 1 1 1 —1 .28 0 .08 0
202 201 2 0 0 1 .62 .49 .39 .24
112 -> 021 6 1 —1 1 .04 0 .00 0Perp. 103 -> 012 1 7 1 —1 1 0 0 0 0
-211 012 / 7 2 0 —1 .01 0 .00 0
202 111 I 8 1 —1 1 0 .04 0 .00
202 -> 003 J 8 2 0 -1 .04 0 .00 0
301 102 9 2 0 —1 .04 .02 .00 .00
202 -> 021 14 2 —2 1 0 0 0 0
301 012 15 3 —1 -1 o 0 0 0

these tables. In the case of the line 3203 A Stark records two symmetrical parallel and 
two symmetrical perpendicular components which for a field of 100.000 Volt/cM would 
be displaced from the original line by an amount 3,8 A and 1,9 A respectively. 
These displacements would correspond to J = i,9/o,33 = 5,7 and J = 3,8/0,33= 11,5 
respectively; as seen from fig. 8, in which the positions of the components observed 
by Stark are indicated by arrows, this is in excellent agreement with what we theoreti
cally should expect. In the case of the line 2733 A Stark records two symmetrical 
pairs of parallel components, which for a field of 100.000 Volt/cM would be displaced 
from the original position of the line by 1,2 A and 5,1 A respectively, while their 
relative intensities are indicated by the numbers (1) and (6) respectively; and one 
symmetrical pair of perpendicular components, which for a field of 100.000 Volt/cM 
would be displaced from the original line by 3,7 A, and the relative intensities of 
which are indicated by the number (4), together with an undisplaced perpendicular 
component, the intensity of which is indicated by the number (7). The values of J

1). K. D. Vidensk. Selsk. Skr., 8. Række, naturvidensk. og mathem. Afd. III. 3. 45
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Table VII.
Helium, 3203 Å^(5 -> 3).

dispi. (J = 1 ; 10Ü 000 Volt/cM) = 0,33 Á

T1 -2 T.. R' 7T ft- /r-

1 1 0
1

0 0 0 0
1 1 0 0 0 0 0
1 1 0 .02 0 .oOO 0
1 1 0 .03 0 ,o01 0
2 0 0 .10 0 .010 0
2 0 0 .10 0 ,oO9 0
2 0 0 .17 .10 .029 .009
2 0 0 .10 0 ,o23 0
2 () 0 .19 .13 .o37 .018
2 0 0 22 .20 ,o47 .041

3 -1 0 .01 0 .oOO 0
3 —1 0 0 0 0 0
Q O —1 0 0 .01 0 .oOO
4 —2 0 0 0 0 0

1 0 1 .08 0 .oO6 0
1 0 1 .12 0 .015 0
9 1 —1 .05 0 ,oO3 0
1 0 1 .14 .10 .019 .oil
1 0 1 .18 0 .033 0
2 1 1 .04 0 .oO2 0

1 0 1 .20 .20 .040 .039
2 1 —1 .07 0 .oO5 0
1 0 1 .18 .16 .032 .027
9 —1 1 .025 0 .oOl 0
2 -1 1 0 0 0 0
3 0 1 .02 0 .(•005 0
2 -1 1 0 .015 0 o.OO
3 0 —1 .02 0 .oOO5 0
Q O 0 —1 .02 .01 .oOOö .oOO
3 _ 2 1 0 0 0 0
4 —1 —1 0 0 0 0

corresponding to the observed parallel components are l,2/o,24 = 5,0 and 5,1/0,24 = 21,2 
respectively, and the values of J corresponding to the observed perpendicular 
components are 3,7/q,24 = 15,4 and 0 respectively; as regards the outer parallel compo
nents these values are, as seen from fig. 9, where again the positions of the compo
nents observed by Stake are indicated by arrows, in excellent agreement with the 
positions of the centres of gravity of the strongest components in the theoretical effect. 
As regards the two inner parallel components, however, we should, on the theory, 
rather expect the appearance of a single diffuse line in stead of two separate compo-
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Table VIII.
(6 -> 3).

dispi. (J = 1 ; 100 000 Volt/cM) — 0,24 Â
Helium, 2733 Â

'ransition J r2 T3 R' R" R'2 R"2

231 _ V 021 ) 0 2 1 0 .o34 0 .ool2 0
321 -> 201 1 0 1 2 0 .034 0 .0012 0
222 -> 012 Q O O 1 0 .o3O 0 .oo09 0
321 nu 6 O 1 0 .o28 .030 .ooO8 .oo09
213 -> 003 f 6 2 1 0 ,o20 0 .ooO4 0
312 -> 102 9 2 1 0 .015 0 .ooO2 0
321 -> 021 1 12 3 0 0 o46 0 ,oo22 0
411 201 / 12 2 1 0 .o06 0 .ooOO 0
312 -» 012 15 O 0 0 o64 0 .oo4O 0
411 —► 111 I 18 3 0 0 .o8O .o24 .oo73 .ooO6
303 -> 003 / 18 3 0 0 ,o79 0 .oo63 0
402 —> 102 21 3 0 0 .101 .o52 .0101 .oo27
411 021 1 24 4 —1 0 .010 0 .ooOl 0
501 201 Í 24 3 0 0 .114 .101 0.130 .0101
402 012 27 4 —1 0 0 0 0 0
501 111 30 4 —1 0 0 .004 0 .ooOO
501 -> 021 30 5 _ 2 0 0 0 0 0

222 _ . Hll 0 1 1 1 .o61 ,o67 .oo37 ,oo37
111 -> 003 J 0 1 1 1 .o62 o .oo38 0
222 —> 003 J 0 2 2 -1 ,o23 0 .ooO5 0
213 -> 102 » 3 1 1 1 .o6O 0 .oo36 0
321 102 / 3 2 2 —1 .031 0 .ooO9 0
222 -» 021 1 6 2 0 1 .023 0 .ooO5 0
312 -> 201 / 6 1 1 1 .o46 0 .oo21 0
213 -> 012 \ 9 9 0 1 .o46 0 .oo21 0
321 012 1 9 3 1 —1 .017 0 .oo03 0
312 —>• 111 1 12 2 0 1 .o55 .023. .oo31 .ooO5
201 -> 003 J 12 2 0 1 .079 0 ,oo62 0
312 -> 003 1 12 3 1 -1 ,ol7 0 .ooO3 0
303 —> 102 1 15 2 0 1 ,o89 .079 ,oo8O .oo62
411 -> 102 / 15 3 1 -1 .029 0 ,ooO9 0
312 -> 021 I 18 3 -1 1 .013 0 .ooO2 0
402 -> 201 f 18 2 0 1 .o84 .084 ,oo71 oo71
303 -> 012 1 21 3 -1 1 0 0 0 0
411 -» 012/ 21 4 0 -1 .014 0 .ooO2 0
402 111 1 24 3 —1 1 0 .007 0 .ooOO
402 —> 0031 24 4 0 -1 .013 0 .ooO2 0
501 -> 102 27 4 0 -1 .013 .oO5 .ooO2 .ooOO
402 -> 021 30 4 _ 2 1 0 0 0 0

. 501 -* 012 : qq 5 —1 -1 0 0 0 0

45*
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nents, because the theoretical intensities of the parallel components at J = 6 and the 
parallel component at J = 0 are of the same order of magnitude. It is therefore 
of interest to note that Stark (see loc. cit., p. 575) only has observed a single, very 
weak, diffuse component, and that he from analogy with the character of the 
Stark effect of for small intensity of the electric force, has suspected this 
component to consist of two symmetrical components.

In connection with the above considerations it may be of interest to emphasize 
that a comparison of the observations on the Stark effect of the helium lines in 
question with the results to be expected on the quantum theory could not have 
been obtained by a direct consideration of the frequencies of the components, cal
culated by means of relation (1) from the values of the energy in the stationary 
states of the atom, but that it was of essential importance for the above comparison 
that we were able to obtain an estimate of the relative intensities of these compo
nents by means of a closer consideration of the motion of the electron in the atom.

§ 7. The fine structure of the hydrogen lines.
In this chapter we will give, from the point of view of Bonn’s theory, a dis

cussion of the intensities of the components of the fine structure of the hydrogen 
lines and of the analogous helium lines, and it will be shown that it is possible to 
account in a suggestive way for the observations, especially in the case of the helium 
lines, the fine structure of which has been carefully investigated by Paschen '). Let us 
first consider the general expression for the frequency of the radiation which may 
be emitted from a hydrogen atom which is uninfluenced by external forces and in 
which the motion of the particles is assumed to be governed by the laws of rela
tivistic mechanics. According to (99) the stationary states of the atom are fixed by 
putting the quantities Z1 and Z2, defined by (23) in § 2, equal to entire multiples of 
Planck’s constant h (compare page 39) :

Zj = n1h, I2 = n2h. (117)

While zq may take one of the values 0, 1, 2 . . ., it must be assumed that n2 
can only take one of the values 1, 2, 3 ... In fact, n2 = 0 would correspond to a 
motion in which the angular momentum of the electron round the nucleus would 
be equal to zero, but such a motion can obviously not correspond to a stationary 
slate of the atom because the electron would collide with the nucleus. Introducing 
(117) in (24) and writing /q-f-n2 = n we gel, with neglect of small quantities of the 
same order of magnitude as the second and higher powers of (y/c)2, for the total 
energy of the atom in the stationary states

’) F. Paschen, Ann. d. Phys. L., p. 901 (1916).
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Denoting lhe values of n2, n2 and n in the initial state and in the final state of a 
given transition by n'2, n and zi", zz'J, n" respectively, we gel according to (1) for 
the frequency of lhe radiation emitted during this transition

The expression for y() coincides with the simple formula (105) for the fre
quencies of lhe lines of lhe hydrogen spectrum (N = 1) and of the analogous 
helium lines (N = 2), which holds when lhe relativity modifications are neglected. 
The expression for >2 is determinative for the frequency differences of the fine 
structure components of a spectral line corresponding to given values of n' and n", 
while i>2, which contains only n' and n", has influence only on the absolute values 
of the frequencies of these components. In the following a hydrogen line which 
corresponds to a transition from an initial state n = n' to a final state n = n" will 
again be characterised by the symbol (n'-^n"). In the same way a transition be
tween an initial state /z1 = n), n2= n'2 and a final state /71 = 7t'1, n2= n" will be 
denoted by (n^, n2 -» 77", n"). The ensemble of components corresponding to all imagin
able transitions between stationary states for which n' and n" have lhe same values 
will be obtained by letting n2 assume each of the values 1,2,... n and n" each 
of the values 1, 2, ... n". If all transitions between stationary states were possible, 
Lhe fine structure of a given line would therefore consist of a set of n' x n" compo
nents. On account of n" being smaller than n', this set may conveniently be des
cribed as consisting of n" congruent groups each containing n' components. Thus 
lhe line (3-> 2) would show two congruent triplets, the line (4-> 3) three pongruent 
quartets, a. s. o. It must, however, be remarked that these groups will in general 
partly overlap each other (compare fig. 10, 11, 13 on Plate IV). Due to the small 
value of the constant a appearing in (122), the frequency differences between the 
components of a given line are so small that it must be expected that in general 
they cannot be separated entirely by the instrument used for the observations. Il 
is easily seen, however, that this will hold to a less degree for lhe helium lines 
(N=2) than for the hydrogen lines (N = 1), because, due to the factor N2 in (120)

9 The factor W+/J1 , which is of importance if the theory is compared with measurements of the 
absolute values of the frequencies of the fine structure components, does not appear in (118), because 
in the calculations of § 2 the mass of the nucleus was considered as infinite compared with that of the 
electron (compare § 5, page 40).
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and the factor N' in (122), the distances between the components will for a given 
helium line be much larger than for a hydrogen line in the same pari of the 
spectrum. In conformity with this, it has for the lines of the Balmer series in 
hydrogen been possible only to establish the existence of narrow doublets, the 
members of which must be expected each to correspond to several components of 
the theoretical fine structure, while for some of the helium lines, especially for the 
lines (4 3) and (5 -> 3), Paschen has been able to detect a considerable number
of components. For these lines Paschen was able to identify in detail all compo
nents found by him with components or groups of components to be expected on 
Sommerfeld’s theory and the experimental value for the constant a, which may be 
found from the observed frequency differences of the components, was in good 

(2 TTC® \a = ~ = 7.30 • 10-3). Moreover the absolute 
values of the frequencies gave, when the calculations were based on the complete 
expression (119) for >, values for the constant K which, within the limit of experi
mental errors, were the same for each of the different hydrogen lines (Æ = c. 109677.7) 
as well as for each of the different helium lines (X = c. 109722.1), while the ratio 

1 +
between these two constants was in agreement with the theoretical value

While Sommerfeld’s theory thus afforded a convincing interpretation as regards 
the frequencies of the fine structure components, it was, however, in the simple 
form in which it was given unable to account for the in ten filies with which 
these components appeared. Especially it seemed difficult to explain the remarkable 
differences shown by the spectrograms of the fine structure of one and the same line 
which were made onder different experimental conditions. Thus, in the case of the fine 
structure of the helium line 4686 Å, the intensity distribution for the different compo
nents on Paschen’s photographs showed pronounced differences if a steady voltage had 
been applied to the vacuum tube containing the gas (“Gleichstrombild”) or if the 
the tube had been exposed to an interrupted spark discharge (“Funkenbild”). In a 
recent paper Sommerfeld2) has made an attempt to explain the intensities of the 
fine structure components by comparing the intensity of every component with the 
product of the a-priori probabilities of the initial state and of the final state of the 
corresponding transition, obtaining in this way what he called a “typical intensity 
distribution”, and by discussing the possible modifications in this distribution which 
the experimental conditions might produce. By such considerations, however, it 
was not found possible to obtain a satisfactory agreement with the observations, and 
Sommerfeld was led to the conclusion that the intensities cannot be explained “statis
tically” but claimed an explanation which takes into account the mechanism of 
the transition process and which therefore might be called “dynamical”. From the 
point of view of Bohr’s theory this conclusion is evident; in the limit of large n’s, 
for instance, the intensities can according to this theory directly be obtained from

') F. Paschen, loe. eit. p. 935.
-) A. Sommerfeld, Ber. Akad. München, p. 83, 1917.
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the properties of the motion of the electron in the atom, but can obviously not be 
found from an examination of the a-priori probabilities of the stationary states, 
although of course these quantities must be taken into account in the detailed 
discussion of the intensities.

/. The relative intensities of the components of the fine structure of the lines of the 
spectrum of the undisturbed hydrogen atom.

In order to discuss the interpretation of the observed intensities which can be 
obtained from the considerations in §5, let us first suppose that the hydrogen atom 
is entirely uninfluenced by external forces. In that case the motion of the electron 
will take place in a plane; moreover the position of this plane would remain un
altered if the electron emitted radiation according to the laws of ordinary electro
dynamics. From the formal connection with ordinary electrodynamics in the limit 
of large n’s we must therefore expect that also on the quantum theory the plane 
of the motion remains unaltered during a transition between two stationary states 
and that the emitted radiation is polarised in this plane. On the other hand the 
total radiation emitted by a large number of atoms will show no characteristic 
polarisation, since the position in space of the plane of the orbit in the stationary 
states is undetermined. Further we have seen in § 2 (compare the formulae (37) 
and (38)) that the motion of the electron may be considered as a superposition of 
a number of circular harmonic vibrations of frequencies ] , where and
a/2 are the frequency of the radial motion and the mean frequency of the angular 
motion respectively, while r1 is an integer which may assume all positive and 
negative values including zero. According to the considerations in § 5 it is there
fore necessary to assume that only such transitions between stationary states will 
be possible for which n2 decreases or increases by 1, i. e. for which the angular 
momentum of the electron round the nucleus decreases or increases by ft/2zr, and 
that the emitted radiation will be circularly polarised in a direction which is the 
same as or the opposite of that of the direction of revolution of the electron in its 
orbit respectively.1) It is thus seen that a large number of the ensemble of the 
n' X n” imaginable components of the fine structure of a line (n' -» n") will corres
pond to transitions which must be regarded as physically imposible, the a-priori 
probability for their spontaneous occurence being equal to zero, and that we may 
only expect the appearance of 2n"—1 components, n" of which correspond to 
n’2 — n2 = 1 and n" — 1 of which to n2 — n'2 = —-1.

In order to discuss the intensities with which, according to Bohr’s theory, 
these components may be expected to appear, it will first of all be necessary to 
discuss the modifications which on account of the degenerate character of the 
system in question must be introduced in the considerations of § 5 in order that 
they may be applied in the present case. As a consequence of the degeneration the

) Compare Bohr, loc. cit. Part II, p. 68.
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a-priori probabilities of the different stationary states are not equal to each other but 
they are, in the case under consideration, proportional to the values of n2x). Hence if we 
consider the ensemble of stationary states for which the value of n = z?1-|-n2 is 
the same, the numbers of atoms in the luminescent vacuum tube present in these 
states may be expected to be approximately proportional to the values of zz2 in 
these states. From this it follows that the intensitities with which on ordinary 
electrodynamics the different radiations of frequencies , where ’^-j-l has
a given entire value, would be emitted from the atoms in states corresponding to 
a given value of n are not simply proportional to the squares of the amplitudes 
of the vibrations of these frequencies in these states, but proportional to these 
squares multiplied by n2. From the formal connection between the quantum theory 
and the ordinary electrodynamical theory of radiation we are therefore, in analogy 
with the considerations in § 5, led to expect that, as a first approximation, an 
estimate for the relative intensities of the fine structure components (zz(, n2 n ', n'f) 
of a given line may be obtained by comparing the intensity of each component 
with the quantities zz2fi'2 and n'2R"2, where R1 and R" represent, just as in § 6, the 
relative amplitudes of the circular harmonic vibrations of frequency (zz, — zz") eq 
-L (n'2—zz2) (t)2 occurring in the motions in the initial and final states, z. e. the 
ratios between these amplitudes and the half major axes of the orbit.

In the tables IX and X we have given schemes for the theoretical estimate of 
the intensities of the fine structure components of a number of spectral lines. 
Tabel IX refers to the lines (3-» 2), (4-* 2) and (5 -> 2), which correspond to 
Ha(6563 Å), Ws(48(51 Å) and H.J4340 Å) in the hydrogen spectrum; Table X refers 
to the lines (4-* 3), (5-* 3), (6 -> 4) and (7-> 4), corresponding to 4686 Å, 3203 Å, 
6560 Å and 5411 Å in the helium spectrum.

The /irsf column contains the transitions giving rise to the different compo
nents, characterised by their symbol (zz;, n2 -* n”, n'f).

The second and third columns contain the values of rx= zzt—zzL and r2= zz2—zz". 
For each line the components corresponding to r2 = + 1 and r2 = —1 are separated 
by a dotted line.

The fourth and fifth columns contain the values of R’ and R” which may be 
found from (37) by introducing (117), and which accordingly have been calculated 
by means of the formula

R(r-1 - ^{(l + eV^Jre) —(l-£')JT+1(re)¡, (123)

where

In order to apply (123) in case of transitions for which r2 is equal to — 1 we must 
obviously introduce for r the negative value r ■= —(zz'—zz").

) Bohr, loc. eit. Part I, p. 27.
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Table IX.

Transition r2 R R" n'9fi'2 n"fi"-' Wave length

03 — 02 0 1 1,00 1,00 3,00 2,00 6562,84 Å
12 -> 11 0 1 0,71 0,59 1,01 0,35 2,72 6563 Á
21 — 02 2 -1 0,19 0 0,04 0 2,89 (3-2)

13 — 02 1 1 ( 1,228 0 0,156 0 4851,36 Å **
22—11 1 1 0,106 0,206 0,085 0,042 1,27 4861 A
31 — 02 3 -1 0,057 0 0,003 0 1,37 (4-2)

23 — 02 o 1 0,106 0 0,034 0 4340,49 Å Hr
32 — 11 2 1 0,101 0,108 0,020 0,012 0,42 4340 Â
41 02 4 — 1 0,038 0 0,001 0 0,50 (5 — 2)

Table X.

D. K. D. Vidensk. Selsk. Skr., naturvidensk. og mathem. Afd., 8. Række, III. 3.

Transition T2 R' R" n'2fi'’2 n''fi'2 Wave length

04 — 03 0 1 1,00 1,00 4,00 3,00 4585,81
13 -> 12 0 1 0,775 0,71 1,80 1,01 5,71 Hélium
22 21 0 1 0,59 0,49 0,71 0,24 5,38 4686 Å
22 03 9 —1 0,14 o 0,04 0 5,89 (4-3)
31 — 12 2 -1 0,22 0,09 0,05 0,02 5,92

14 03 1 1 0,222 0 0,198 0 3203,17
23 — 12 1 1 0,221 0,227 0,146 0,103 3,12 Helium
32 21 1 1 0,188 0,175 0,071 0,031 2,95 3203 Ä
32 — 03 3 —1 0,051 0 0,005 0 3,19 (5 — 3)
41 -> 12 3 -1 0,081 0,021 0,006 0,001 3,17

15 — 04 1 1 0,215 0 0,231 0 6560,19
24 13 1 1 0,227 0,228 0,206 0,156 60,15
33 _ 99 1 1 0,206 0,206 0,127 0,084 60,06 Helium
42 — 31 1 1 0,175 0,173 0,061 0,030 59,78 6560 À
33 — 04 3 -1 0,039 0 0,005 0 60,21 (6 — 4)
42 — 13 3 —1 0,060 0,014 0,007 0,001 60,19
51 —» 22 3 —1 0,084 0,039 0,007 0,002 60,18

25 — 04 O 1 0,105 0 0,055 0 5411,60 Â
34 — 13 9 1 0,104 0,100 0,043 0,030 1,57
43 —> 2Q 9 1 0,103 0,108 0,032 0,023 1,50 Helium
52 — 31 9 1 0,089 0,086 0,016 0,007 1,30 5411 À
43 — 04 4 —1 0,027 0 0,002 0 1,61 (7 — 4)
52 — 13 4 —1 0,035 0,005 0,002 0,000 1,59
61 —* 22 4 —1 0,044 0,025 0,002 0,007 1,55

46
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The sixth and seventh columns contain the values of n2R'2 and n.R”2, which 
may be expected to afford an estimate for the intensities.

The eighth column contains the theoretical values for the wave lengths of the 
components calculated by means of the formulae (119), (120), (121), (122) and are 
taken from Paschen’s paper.

When discussing the estimate afforded by the preceding tables, it will first of 
all be remarked that the values of n'2R'2 and n"R”2 for transitions for which ñ2 
decreases by 1 are much larger than for transitions for which n2 increases by 1, 
so that the components corresponding to the former transitions must be expected 
to be much stronger than those corresponding to the latter. (In § 6 we have already 
met with the analogous circumstance in the Stark effect, where components for which 
one of the r’s is negative are much weaker than the other components, and the 
connection was pointed out with Sommerfeld’s suggestion that no transitions would 
be possible for which one or more of the n’s increase. See page 58). It must therefore 
be expected that in general the fine structure of a line (n'->/i") will consist of n" 
strong components, corresponding to the transitions

(zz' — n” — 1 , 1 > 0
( n' — zz" , n" > 1 , zz"—1)

( n' — 2 2

and of n" 1 weak components, corresponding to the transitions

(n' — n" 1, n”— 1 —>• 0 , n" )
(n' — n"-|-2, rt”—2 -» 1 , n"—1)

( n' — 1 , 1 - n"—2 , 2 ).

Moreover the values of n2R'2 and n"R”2 in the tables indicate that the values of 
the intensities of the strong components, to begin with the second, will form a 
series of decreasing numbers. As to the intensity of the first component we must 
distinguish between two cases, viz. n'—n" = 1 and n'—/z" > 1. In the first case we 
have to do with a transition between two circular orbits for which n\R'2 and n"R"2 
become equal to n', and n” respectively, and we should expect that the corresponding 
component would be the strongest of the fine structure under consideration. In the 
second case the orbit of the electron is circular only in the final state, and R” 
becomes equal to zero, so that the intensity of the first component in this case 
must be expected to be less than that of the second. At the same lime, however, 
we should anticipate, from analogy with what has been observed in the discussion 
of the Stark effect in the case of transitions in which circular orbits of the electron 
are implied, that such conclusions about the intensity of the first component in 
question will bear a more or less exaggerated character.
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All this is in general agreement with the observations as it will be seen from 
a detailed discussion of the fine structures observed. Before entering on such a 
discussion, however, it will be necessary to consider in a certain detail the in
fluence which small perturbing electric forces will have on the fine structure 
of the hydrogen lines and helium lines under consideration. That such an 
influence must beforehand be expected to be very considerable may for instance 
be seen from the circumstance that rather small electric fields will be sufficient to 
disturb entirely the character of the fine structure and to give rise to a regular 
Stark effect. Thus, in the case of If,, an electric field of 1000 Volt/CM would already 
give rise to a Stark effect for which the distance of the outer parallel components 
is equal to nearly two times the width of the original fine structure doublet of Ha, 
From a mechanical point of view the easiness with which a fine structure is 
disturbed by a small external electric force is interpreted by observing that the 
deviation of the orbit of the electron from a purely periodic orbit due to the in
fluence of the relativity modifications is extremely small, so that already a com
paratively small electric force will produce alterations in the orbit which are of 
the same order of magnitude. As it will appear in the following sections a dis
cussion of the effect of a weak electric field is of essential importance in order 
to obtain a theoretical understanding of the typical manner in which, on many 
of Paschen’s spectrograms, the intensity distribution of the different components 
deviates from the simple intensity distribution to be expected from the preceding 
considerations in Ibis section.

II. Effect of a weak electric field on the fine structure of the hydrogen lines.

A general discussion of the effect which an electric field must be expected to 
have on the fine structure of a hydrogen line when its intensity increases from 
zero, so that the fine structure is gradually transmuted into an ordinary Stark effect 
in which the relativity modifications play only a secondary part, will, as mentioned 
in the beginning of § 4, be given in a later paper. Here we will only discuss the 
efi’ect of an electric field, the intensity of which is so small that its influence is still 
small compared to that of the relativity modifications.

The character of the influence of a small external constant field of force on 
the spectrum of an atomic system has been treated by Bohr in the first and in the 
second Part of his often mentioned paper. As regards the frequencies of the spectral 
lines this effect may be directly found by means of (1) as soon as it is possible to 
fix the energy in the stationary states of the perturbed system. This constitutes a 
problem which in general may be solved if the deviations of the mechanical motion 
of the perturbed system from the motion in the undisturbed system are at any 
moment very small, and for its treatment the fundamental principle of the mechani
cal transformability of the stationary states, which has been introduced in the 

46* 



360 76

quantum theory by Ehrenfest1), plays an important part. From Bohr’s paper it 
will, however, be seen that if the undisturbed system is degenerate, i. e. if the 
number of degrees of freedom is larger than the number of the conditions which 
fix the stationary states of the undisturbed system, complications present themselves 
owing to the circumstance that in such a case the stationary states of the perturbed 
system in general will be fixed by a larger number of conditions. In such a case 
a closer examination of the motion of the perturbed system, and especially a con
sideration of the small new frequencies, impressed on the motion of the system by 
the perturbing forces, is necessary in order to obtain a fixation of the stationary 
states. A general exposition of the methods, developed by Bohr, by means of 
which it is possible to fix the stationary states of a perturbed system, will be given 
in the later paper referred to above; in the present case, where we consider the 
influence of a weak homogeneous electric field on the hydrogen atom, which will 
not essentially disturb the character of the motion of the atom, we shall only 
mention the points which have direct connection with this problem, without entering 
more closely on a theoretical discussion.

The properties of the mechanical motion of the electron in a hydrogen atom 
which is exposed to a small electric field of force have been investigated in detail 
in § 4. From the calculations in this section it is seen that the character of this 
motion, with neglect of small quantities proportional to the square of the intensity 
of the perturbing force, may be considered as characterised by three quantities 
/", I°2 and /°. If the intensity of the perturbing force is zero (F=0),and 
coincide with the quantities I} and /2 respectively, which in the notation of § 2 char
acterise the motion of the electron in the undisturbed atom. The quantity represents 
2~ times the angular momentum of the electron round an axis through the nucleus 
parallel to the electric force. While the stationary states of the undisturbed atom, 
which forms a degenerate system, are fixed by the two conditions (117), the statio
nary states of the perturbed system will, disregarding small quantities proportional 
to F2, be characterised by the following three conditions:

Z° = zq/j, = (zz2— «)/i, /" = n/z, (124)
where nv n2 and n are positive integers of which zi2>n. A state of the perturbed 
system satisfying these conditions for given values of zq, zi2, n will in the follow
ing be characterised by the symbol (zq, zq; n). Comparing with the formulae in 
§ 4, it is seen from (124) that the motion in a stationary state of the perturbed 
system will, at any moment, only differ by small quantities proportional to the 
intensity F of the perturbing force from a stationary motion of the undisturbed 
system, which besides satisfying the conditions (117) satisfies the additional condi
tion that the angular momentum of the electron round the axis is equal to an 
entire multiple of F'2-. It will be seen that the latter condition fixes the position 
of the plane in which the electron moves, which was naturally left undetermined

’) See Bohr, loc. eit. Part I, p. 8. 
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by the conditions (117), and that the sine of the angle which this plane makes with 
the axis will be equal to 11 . *) The different possible stationary slates of the per- 

^2

q In Bohr’s paper (Part I, page 35; Part II, page 55) it has been mentioned that quite generally 
we must expect that one of the conditions which fix the stationary states of an atomic system which 
possesses a fixed axis of symmetry will claim that the total angular momentum of the system round 
this axis is equal to an entire multiple of ^/2~. Starting from this result it may directly be proved 
that the conditions (124) are in concordance with the principle of the mechanical transformability of 
the stationary states. In fact, it can be proved that during a slow increase of the intensity of the elec
tric field the mean values of the quantities f1, I2 and , taken over the motion of the perturbed 
system, with neglect of small quantities proportional to F2 will remain the same. Since now, according 
to the calculations in § 4 (see page 30), the quantities I2 and I3 appearing in the conditions (124) 
just represent the mean values of I2 and /3, it will therefore be seen that, if we start from a sta
tionary motion of the undisturbed atom which satisfies the additional condition of the angular momen
tum, the atom will during a slow establishment of the perturbing electric field pass mechanically into 
a state which satisfies the conditions (124).

2) If, for instance, we imagine that the intensity of the electric force increases to values which 
are so large that the relativity modifications may be neglected we would obtain the system considered 
in § 3 and § 6, and the states in question would be continuously transformed into the corresponding 
states of the latter system, the motion in which, as mentioned on page 50, involves an essential sin
gularity. Compare Bohr, loc. cit. Part II, page 56.

s) The fact that in the present case the alteration in the total energy of the system due to the 
presence of the external forces, i. e. what Bohr calls the “additional energy” of the perturbed system, is 
equal to zero as far as small quantities proportional to F are concerned may be directly deduced from 
a general theorem which states that if a conditionally periodic system is perturbed by a constant small 
external field of force the value of the additional energy in the stationary states of the perturbed system 
is, with neglect of small quantities proportional to the square of the external forces, simply equal to

turbed system are a-priori equally probable and are obtained by letting /q assume 
the values 0, 1, 2, . . n2 the values 1, 2, 3, ... and n the values 1, 2, . . ., n2. That 
no stationary states exist in which n2 would be equal to zero follows, as mentioned 
on page 68, from the fact that the motion in these states would not be physically 
realisable since the electron would collide with the nucleus. In states for which n„ 
would be different from zero, but in which n would be equal to zero, the mechani
cal motion of the electron would not show singularities, but as pointed out in 
Bohr’s paper it is possible to conclude, from the principle of the invariance of the 
a-priori probability of the stationary states for continuous transformations, that 
these states cannot represent stationary slates since it would be possible to trans
form them continuously into physically unrealisable states.* 2)

From the calculations in § 4 it follows that, with neglect of small quantities 
proportional to the square and higher powers of F, the total energy of the perturbed 
system may be expressed in terms of /J, /° by the same function as that by
which in (76) the quantity «1 is expressed in terms of /2, I3 (compare page 31). 
Introducing (124) it will therefore be seen that the total energy of the stationary 
states of the perturbed system with this approximation will depend on iq and n2 
only, and will be given by the same formula as that holding for the energy in 
the stationary states of the undisturbed system, which was given by (118).3)
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With reference to the general relation which, according to Bohr, must be ex
pected to exist between the additional energy of a degenerate system due to the 
presence of small external forces and the small frequency (or frequencies) impres-

the mean value of the potential energy of the system with regard to these forces, taken over a long 
time interval for the “corresponding” stationary motion of the undisturbed system, i. e. the motion in 
the state which would appear if the perturbing field decreased to zero infinitely slowly and at a uni
form rate. This theorem follows directly from the principle of the mechanical transformability of the 
stationary states, since it may be shown that during such a slow change of the perturbing field the 
external forces will, with this approximation, not perform work on the particles of the system (com
pare Bohr, loc. cit. Part II). In order to apply the theorem in the present case we have to calculate 
the mean value of the potential energy of the electron with respect to a homogeneous electric field of 
force, taken over the motion which this electron performs in the stationary states of the undisturbed 
hydrogen atom, but owing to the symmetry of the latter motion round the nucleus this mean value is

the ratio of which to one of these terms is

in

it

is

the expression for the additional energy is 

is of interest that this term may be calcu- 

seen from (94) that the mean position of the

always equal to zero. In fact, 
from (90) it is seen that the 
undisturbed system does not 
(Compare also J. M. Burgers,

with the notation of § 4, the perturbing potential is equal to Fez, and 
trigonometric series representing z as a function of the time for the 

contain a constant term, so that the mean value of z is equal to zero. 
Het atoommodel van Rutherford-Bohr, Haarlem 1918, p. 128.)

In the later paper, referred to above, which deals with the transmutation of the fine structure 
into the Stark effect, it will be proved that, for small values of the intensity of the electric field, 
the additional energy in the stationary states may be represented by a series of terms of the form

1 F /F\2 iF J a, — + a2 Ç o ) + . . . J , if we disregard small terms

of the order F, F2, ... or o, o2, ... The largest term
F2

thus seen to be a small quantity of the order , and

lated already from the formulæ deduced in § 4. Thus it
electron taken over a large time interval, which for the undisturbed orbit coincided with the nucleus, 
under the influence of the electric field is displaced in the direction of the positive z-axis by an amount

3eFz2I°3 3(__ s2J-s'2zz2i
equal to ■  —7— = sF. If we now imagine that the electric force increases slowly and

uniformly from zero, it will be seen that the work performed by the external force on the atom during 
this process will be equal to —eFd(sF) — — .$seF2. Since further the mean value of the potential 
energy of the perturbed atom with respect to the electric field is equal to sF ■ eF = seF2, it is seen, 
with reference to the principle of the mechanical transformability of the stationary states, that we 
may conclude that the additional energy in the stationary states of the system under consideration

1 1 ~ “ 2 7T2 N2 e4 m
will be given by seF2 — - seF2 = seF2. Introducing Io = nh, s' = nt/n, ¡F = n/ 
/27rNe2|2 ' 
\ he ‘

1
j 2 — 2"“ ’ .................... — ................ " ~ "* — — h*

3 (compare formula (86)), and denoting the additional energy by JE, we have thus
2

9 / h I8 c2F~
4'2-' N6e10m3 n5n2(n2- 2n| — n2).

This formula allows in first approximation to calculate the displacements of the components of the fine 
structure under the influence of an external electric field. In fact, the presence of the perturbing forces 
will cause that the frequency of the radiation corresponding to a transition (n', n'g ; if —> n", n" ; if'), 
which gives rise to one of the components into which the fine structure component (n', n't —> n", n") 
is split up, will differ from the value of p given by (119) by an amount

9 h'c2F’
4 (27r)8NG e10

2n'2 -|- if-’) — n"5n"(n"2 — 2n"2)].

For the sake of orientation it may be of interest here to note that for increasing intensity of the elec
tric field a state of the system, for which = nth, 1$ — (n2 ll)/i, I1.} — uh, will be continuously
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sed by the perturbing forces on the motion of the originally degenerate system, it 
will be seen that the circumstance, that in the present case the energy in the sta
tionary states of the perturbed system to the first approximation does not depend 
on the value of the integer n appearing in the third of the conditions (124), is 
intimately connected with the fact that the two fundamental frequencies and m2, 
which together with uq characterise the motion of the perturbed system, do not 
diller from each other as far as small quantities proportional to are concerned 
(see § 4, page 33)

With reference to (1) it will be seen from the above that the effect of the 
external electric held on the spectrum of the hydrogen atom consists, as regards 
the frequencies, in the splitting up of every fine structure component 
in a number of components, because to every stationary stale (nv n¿) of the 
undisturbed atom there corresponds a number of stationary states (nv n2; n) of the

transformed into one among the stationary states involved in the theory of the Stark effect, for which, 
with the notation of §3, Z3 (= 2 tt X angular momentum of the electron round the axis of the field) 
has the same value as Zg, but for which Z, = Z'j and Z2 — ZJ.

*) From the formulæ (90) and (41) it will, with reference to the considerations on page 15 and 
16, be seen that a>3 — w2 represents the frequency with which the plane of the orbit of the electron 
under the influence of the electric field rotates uniformly round the z-axis. As it will be proved in the 
paper referred to above, this frequency may, just as the additional energy, be represented by a series 

r F / F \ Iof the form F Z?, 4- b2 ( ; the first term of this series may again be found already from the 

calculations in § 4, by means of a consideration of conservation of angular momentum analogous to 
that applied by Bohr in his discussion of the Stark effect (loc. cit. Part II, p. 72). In fact, a rotation of 
the plane of the orbit will imply a change of the angular momentum of the electron round the nucleus, 
considered as a vector, the mean value of which, taken over a time interval large compared with

- but small compared with , will have a direction perpendicular
0 <O2

notation of § 4, be equal to /z — wa), where the first factor

to the z-axis and, with the 

represents the component of

the field. This mean changethe angular momentum of the electron perpendicular to the direction of
in angular momentum, however, is directly seen to originate from the fact that the mean position of 
the electron, taken over a time interval of the order mentioned, will not be placed on the z-axis but 

3eFz2Z°3
will, as seen from formula (96), be displaced from this axis by an amount —3/z //s' in a direction

4 0

perpendicular to the direction of the mean change of the angular momentum. Equalizing the mean 
value of the change of angular momentum due to the action of the external force with the amount 
arising from the rotation of the plane we consequently get 

which gives

(t)2

which, as it was to be expected, is seen to be a small quantity of the same order as the small fre
quency differences between the components into which each fine structure component is split up under 
the influence of the external field and which can be directly found from the formula for J > deduced 
in the above note.
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perturbed atom, corresponding to the different possible values of n (it = 1,2, . . . n2), 
but the displacements of these componenLs from their original posi
tions will only be small quantities proportional to the square of the 
electric field (the displacements being represented by small terms containing 
the factor F2/0. Compare note 3 on page 77).

Let us now proceed to discuss the influence of the electric field on the inten
sities of the fíne structure components. On Bohr’s theory this influence may be 
discussed by considering the amplitudes of the harmonic vibrations in which the 
motion of the electron in the perturbed system may be resolved. Now for the un
disturbed hydrogen atom there appear in the motion, as mentioned above, only 
vibrations of frequencies aaq-j-<w2, where a is a positive integer, and from this the 
conclusion was drawn that only such transitions were possible for which n'2 — n2 
was equal to 4- 1, i- e. for which the angular momentum of the electron round the 
nucleus decreased or increased by ft2- In the motion of the perturbed system, 
however, there appear vibrations of frequencies which did not appear in the origi
nal motion. Thus, identifying for the moment w2 and <u3, we see from the calcula
tions in § 4 that there will occur vibrations in the motion of the perturbed system 
the amplitudes of which are small quantities proportional to F/o f and the frequen
cies of which are equal to acnl and aa)} ¿2w2, where a is an integer. On the other 
hand the amplitudes of the vibrations of the original frequencies which appeared 
already in the motion of the undisturbed atom are, as far as small quantities of 
ibis order are concerned, not influenced by the perturbing field. From these facts 
we may, with reference to the formal connection between the quantum theory and 
the ordinary theory of radiation, directly conclude that under the influence 
of the electric field there will appear new components in the fine 
structure of the hydrogen lines corresponding to transitions between 
an initial state n.,} and a final state (n", /z") for which n2 — n" = 0 
or n'2 — li ' — zt-2, i- e- for which the angular momentum of the electron 
round the nucleus remains unchanged, or decreases or increases by 
2’^/2- (compare Bohr, loc. cit. Part II, p. 69). The intensities with which these 
new components appear will be of the same order as the square of the amplitudes 
of the vibrations corresponding to the new frequencies cko1 and Höji;£2w2, i. e. 
they will be represented by small quantities proportional to (-F/o)2.

We may summarise the results of the preceding discussion by saying that 
the presence of a small homogeneous electric field of force in first 
approximation will leave the frequencies and relative intensities of 
the original fine structure components of the hydrogen lines unal
tered, but will g i V e rise t o t h e a p p e a r a n c e of new components, the 
frequencies of which are equal to the s u m o r to the d i f f e r e n c e o f two 
of the original components. This affords a general interpretation of the fact 
mentioned above that the appearance and intensity of the fine structure components 
appearing on Paschen’s photographs seem Lo depend on the experimental conditions 
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under which the spectrum was produced. In fact, we must naturally expect that in 
the vacuum tube containing the luminous gas there will always be electric fields 
acting on the atoms, bul under different experimental conditions these fields will 
not be equally strong, and especially in the case where an interrupted spark dis
charge is applied, the intensity of such fields may become considerable.

In order to discuss in detail the intensities with which for a given value of 
F the new components may be expected to appear it will first of all be 
necessary to consider in detail the different transitions between stationary states 
giving rise to these components. The motion of the system in a stationary state 
(rij, n2; n) will be given by the formulae (83), (90), (94) and (96) in § 4, if we intro
duce for 7°, 7°, 7° and 7° in these formulae their values zin zz2—n, n and n == nl-\-n2 
respectively. A transition between an initial state (n't, n'2; it') and a final state (n", n"; n") 
will be characterised by the symbol (zz',zi'2; n'^zz", n"; n"). If œv m2 and oj3 have 
the same signification as in § 4 it may be shown by a closer examination of
the perturbed system, as that which will be given in the later paper mentioned
above, that the general relation discussed in § 5 between the frequencies which an
atomic system will emit during a transition between two stationary states, and the
frequencies occurring in the motion of the system, will in the present case exist therein 
that the frequency of the radiation emitted during a transition (zi), n'2 ; n' —» n”, zi" ; if') 
will be equal to the mean value of the frequency (nj—zií')í«1-j-(zi2—n' —n" —n")m2 
+ (if — n'')<o3 occurring in the motion in the states corresponding to 7') = ;/(-j- 
x(n'—-zz"), +/" = n" 4-À (n2—zz'J), 7° = n"-f-Á (n'— n"), where / takes all possible
values between 0 and 1. Now the motion of the perturbed system may be resolved 
in a number of linear harmonic vibrations parallel to the electric force, the fre
quencies of which are of the type r2o»2 , and in a number of circular harmonic
rotations perpendicular to the electric force and of frequencies rptq-j-r2o>2-|--a>3 as 
it is seen from (94) and (96). We shall therefore expect that, just as in the theory of 
the Stark effect, two kinds of transitions will be possible, viz. transitions for which 
if — it" = 0 and which give rise to radiations polarised parallel to the electric force, 
and transitions for which if — it" = J- 1 and which give rise to radiations of cir
cular polarisation perpendicular to the electric force.1) Further from (83), (90) and 
(94) it is seen that the motion of the electron parallel to the electric force consists 
partly of vibrations of frequencies which also occurred in the undisturbed
motion, and the amplitudes of which in first approximation are not affected by the 
electric force, partly of vibrations of frequencies , and t rptq-f-2ûz2 ! the ampli
tudes of which are proportional to F/o. From this we may conclude that two types

’) This conclusion will be seen to be supported by a consideration of conservation of angular 
momentum round the axis of the field during the transitions, as that mentioned in note 2 on page 45. 
In this connection it may be of interest to observe that the effect of the external electric field in 
producing new components has intimate relation to the possibility for these forces to change the total 
angular momentum of the electron round the nucleus during a transition between two stationary states 
(compare Rubinowicz, 1. c.).
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of transitions will be possible for which rt remains unaltered, viz. transitions for 
which n2—n and therefore also n2 changes by one unit, and which give rise to 
radiations corresponding to the original components of the fine structure; and 
transitions for which zz2— n and therefore also n2 remains unaltered or changes 
by two units, giving rise to radiations which correspond to the new components. 
In the same way it is easily seen from (83), (90) and (96) that also the transitions 
for which it changes by one unit may be divided into transitions for which n„ 
changes by one unit and which contribute to the original components, and transi
tions for which n2 remains unchanged or changes by two units and which con
tribute to the new components. According to the considerations in § 5 we shall further 
expect that it will be possible, from the numerical values of the amplitudes of the 
corresponding harmonic vibrations occurring in the initial states and in the final 
states, to obtain an estimate for the relative intensities with which for a given 
hydrogen line (zf —► n") all these components will appear. Let us consider the 
estimate which in this way may be obtained from (94) and (96) for the intensities of 
the new components assuming that the direction of the perturbing electric field is 
perpendicular to the direction in which the spectrum is viewed. The radiations giving 
rise to a new component characterised by (n'l, zz2 —► zz", zz") will originate from different 
transitions (zz), zz2; if zz”, zz2; it") where zz), zz'2, zz), zz) have the same values, but where 
if and if' may assume different pairs of values. For if — it" = 0 these transitions 
give rise to radiations polarised parallel to the electric force; for if — n" = J-l they 
will give rise to radiations polarised perpendicular to this direction. The new com
ponents might therefore in general be expected to show characteristic polarisation if the 
direction of the electric force was the same at all points in the luminescent vacuum 
tube which contribute to the formation of the spectroscopical image. In order to obtain 
an estimate for the intensities of the radiations corresponding to these transitions 
we shall, in analogy with the procedure followed in §6, for each transition (zz), zz'2; if 
-> zz), zz); it") calculate the square of the relative amplitude of the harmonic vibration 
of frequency (zz)—zz)) ztq(z/2 —if— zz)— n") a»2-j-(zz)— zz))w3 occurring in the mo
tion in the initial state and in the final state, where just as in the preceding sections 
under relative amplitudes are understood the actual amplitudes divided by the 
length of the half major axis of the Keplerian orbit which the electron at any 
moment may be considered to describe. Now this half major axis is equal to x/°2 so 
that from (94) and (96) the values of the relative amplitudes may directly be found.

SeFxI"The expressions obtained in this wav are all seen to contain the factor . ’ , which 4 oby means of (124) and (86) may be written in the form

/ h \6 c- zz1 zz , ,,/z * zz®GJ e^m2 ' N:> k ' N* ’ 

where k is a constant the value of which may be simply calculated from the 
experimental data, owing to the fact that we, with reference to formula (105), can 
write k in the form
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where K c is Rydberg’s constant. Taking Kc 1,097-Hf and using Millikan’s value 
for e (e = 4,77 • 10 10), we find

k = 0,00165. (125)

The expressions lor the relative amplitudes may now be written in the form

where the quantities s', s, and are functions of the n’s which according to 
(94) and (124) are expressed by means of the formulae

/ÍITWJ
kFnÁn¿ ei, \= y ¡(2 + 5//<-’r) 1(ts) + (-2 -5/z-^r) J_+1(T£)j ,

B(t~2m1 ->-2<w2) = o't-J11 £’)(6 4-£'l(3e' 2)- ts'(5-3s'2)) J- ](r£) + (l s')((l-s')(3s'4-2)-|-ts'(5—3e2)Jt+1(ts)J,

7? (tw1 — w2 -j- <y3) = ktt^ó'12 2J {(34'5r(1 + e7-t'))<7T_i(T£) + (3—5t(1 —£>')) JT+1(re)J .

B (r—w:.) 2) rs' (5 -3s'2)) JT_i(rs) ¿-(1 s')((l s')(3s' + 2Hrs'(5 3s'2)) Jr+] (rsfl

= kF'y"’ £')((1 s')(3s'+2)- ts'(5-3s'2))Jt_1(t£)-(1—s')((1-s')(3s' 2)-rre'(5 3s'2)) /^(ts)},

' (126)

n
J

7L>

In case of circular orbits (s'— 1, 
ing to (97) assume the simple form

7?(2ío2)

B [co., -¡- <z»3)

77 ( — 3o>2 w3) —

fhe appearance of the factor in the formulae indicates that the intensities 
of the perturbed components will, for the same intensity of the electric field, 
increase very fast if the quantity n' characterising the initial state increases, so that 
lor instance in the Balmer series the higher members will be much more influenced 
by an electric field than the first members. Further the appearance of N-’ in the 
denominator indicates that for a hydrogen line (N = 1) the influence of an electric 
field will again be much stronger than for one of the analogous helium lines (N = 2) 
in the same part of the spectrum, in agreement with what might be directly 
expected from the fact that for the latter lines the frequency differences of the 
fine structure components are much smaller than for the former lines, while the 
frequency differences for the components of the Stark effect are larger.

(126) accordât)) the formulae

«(1
(127)

b fl*

2N5

ZcFn6

kFne .,

£ = 0, n1

47*
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III. Comparison of the theory with the observations on the fine structure.
We shall now proceed to compare the estimate of the relative intensities, ob

tainable from the preceding considerations, with Paschen’s observations. As men
tioned at the end of the first section of this chapter it is necessary, in order to 
account for these observations, to pay attention to the disturbances which the fine 
structure undergoes as a consequence of the presence of external forces, and we 
shall therefore in the following discussion from the beginning take the intensities 
of the “new” components, discussed in the second section, into account. The first 
problem with which we meet will therefore he to compare these intensities for a 
given value of the intensity F of the external electric field with the intensities of 
the original components. Now the latter intensities were already estimated in the 
preceding section on the basis of the formulae (123), the numerical results being 
given in tables IX and X. It is, however, not possible to compare the numbers in 
these tables directly with the numbers obtained from (126) and (127) because in 
the formulae (123) are given the relative values of the amplitudes of the circular 
harmonic rotations which the electron in the undisturbed hydrogen atom performs 
in the plane of its motion. On the other hand, in order to take into account 
that the electron moves in space and that the position in space of the plane 
of its motion is arbitrary, it will obviously be sufficient to multiply the numbers 
n'2R'2 and n”R"2 in tables IX and X by the factor 2/s, the numbers thus obtained 
representing an estimate of the relative intensities of that part of the original 
components which may be considered as polarised parallel to the direction of 
the electric force, or that part which is polarised perpendicular to this direction, 
which two parts are equal on account of the original components being unpolari
sed. It must, however, be observed that we could also have obtained an estimate 
for the intensities of the original components by considering the different transitions 
(n\, n2; n’n", n"; n") between stationary states of the perturbed system which 
contribute to these components, but this would complicate our tables without 
necessity, and moreover we shall have the opportunity to come back to this 
other method of estimating the intensities of the original components in § 8, 
where the influence of a magnetic field on the fine structure of the hydrogen lines 
will be discussed.

In the tables XI, XII and XIII we have given a scheme of the estimate which 
according to the preceding considerations can be obtained for the intensities of the 
new and of the original components in case of the fine structure of the helium 
lines 4686 Å (4-^3) and 3203 Å ( 5 —» 3) (X = 2) and of the hydrogen line Ha, 6563 Å, 
(3-* 2) (X = 1). In the calculation of the tables we have taken F = 1 i. e. the 
intensities of the new components refer to an intensity of the perturbing electric 
field of 300 Volt/cM.

The first column contains the symbols (n\, ii2) characterising the tran
sitions between two stationary states of the hydrogen atom to which the new and 
the original components correspond.
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The second column contains the symbols (n't, n2; n' -> n'2; n") character
ising the transitions between two stationary states of the perturbed system which 
contribute to the new components. For each component the transitions which give 
rise to radiation polarised parallel to the direction of the electric force and 
those giving rise to radiation polarised perpendicular to this direction are collected 
in brackets and indicated by Par. and Perp, respectively. According to what has 
been said on page 77, only such states are taken into account for which n is diffe
rent from zero.

The third and fourth columns contain the values of the squares of the relative 
amplitudes of the vibrations of frequencies (n, —-j~ ( n„— n'— n2—n") m., 
-}- (n' — n")û>3 in the initial states and final states respectively, calculated by means 
of (125), (126) and (127). For the original components these columns contain the 
values of the squares of the quantities R’ and R" appearing in tables IX and X.

The fifth and sixth columns contain the sums of these squares corresponding 
to each of the new components respectively, the quantities corresponding to radia
tion polarised parallel and to radiation polarised perpendicular to the axis being 
taken together respectively. For the original components these columns contain 
the values of 2/sn'2R"J and 2¡9rí2R”2.

The seventh column contains the values of I he wave lengths for the different 
components. These values may be calculated from the expression (119) for the 
frequencies of these components and are taken from Paschen’s often mentioned 
paper.

We will now proceed to discuss the observations on the fine structure of the 
hydrogen lines (N = 1) and of the analogous helium lines (N = 2) in detail, and 
we shall first consider the latter lines for which we may compare with the detailed 
results of Paschen’s observations. Especially in case of tw’o of these lines, viz. 
4686 A (4—*3) and 3203 A (5-* 3), Paschen has been able to obtain in detail a con
firmation of Sommerfeld’s theory regarding the frequencies of the fine structure 
components, and just for these lines a theoretical interpretation of the observed 
intensities seems only possible if the effect of a perturbing electric field is taken 
into account.

Let us first consider the helium line 4686 A (4~>3) for which the observed 
fine structure exhibits the richest details and therefore offers the best opportunity 
for a comparison with the theory. In fig. 10 on Plate IV a scheme is given of 
the theoretical and of the empirical results regarding the fine structure of this 
line. In the theoretical scheme the original components are indicated by drawn 
lines and the new components by dotted lines. The lengths of the latter lines are 
for each component taken proportional to the sum of the corresponding quan
tities s(Æ'sj and s(R"2) appearing in Table XI, while those of the former lines are 
taken proportional to twice the sum of the quantities 2/3 n2R'2 and 2/a n2R"2 appearing 
in this table. The intensities of the new components, as given in the figure, would 
correspond to an intensity of 600 Volt/cM. In this connection it may be noted, 
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however, that owing to the fact that the relative amplitudes corresponding to the new 
components are of widely different order of magnitude in the initial and in the 
final state, we cannot expect that the sums of s(R'2) and s(R"2) will give more than 
an estimate of the order of magnitude of the intensities with which the new 
components must be expected to appear in comparison with the original compo
nents. The schemes representing the results of the measurements are taken from 
Paschen’s paper. The one corresponds to what Paschen calls the “continuous dis
charge image” (“Gleichstrombild”) of the line structure, which appears when a

Table XI.
Helium, 4686 A (4 —> 3;.

New components (Perturbing field 300 Volt CM)

Component Transition fi2 J?'2 S|fi'2) s (R'2) Wave length

04 -» 12 04; 2 -» 12; 2 0 0 4685,684 Ä
Kar- I 04; 1 12; 1 0 .0019 0 .oo2

04 ; 3 -> 12; 2 0 0
Perp. ( 04; 2 - 12; 1 0 .001 1 0 .(Mil

04;1 -» 12; 2 0 0

J 3 21 Par. 13 ; 1 -> 21; 1 .113 0 .11 0 5,331
Perp. 13; 2 21; 1 .056 0 .06 0

13 — 03 13; 3 03; 3 .031 0 5,837
Par. 1 13; 2_> 03; 2 .110 0 * .32 0

13; 1 - 03; 1 .176 0
13; 3 03; 2 0 0

Perp. 13; 2 03; 1 ' .075 0
13; 2 -> 03; 3 ! .019 0 .14 0
13;1 -> 03; 2 .048 0

‘>2 —> p>
Par. 22; 2 —* 

t 22; 1 —»
12; 2
12; 1

.018

.046
.ooO9
,oo35 .06 ,oo4 5,7 64

Perp.
Í 22; 2 -
( 22; 1 ->

12; 1
12; 2

0
.011

,oo20
0 .01 .oo2

31 -> 21 Par. 31 ; 1 21; 1 .005 .ooO3 .005 .ooO 5,544

31 -> 03 Par. 31 ; 1 -> 03; 1 0 0 0
1 ’0 6,050

Perp. 31 ; 1 —> 03 ; 2 0 0 0 0

Original components ñ- 2/:izr2fí'2 2/sn,fí''- Wave length

04 -> 03 1.00 1,00 2,66 2,00 4685,810 A
13 -> 12 0,60 0,50 1,20 0,68 5.710
22 —> 21 0,35 0,24 0,46 0,16 5,384
oo _ > 03 0,02 0 0.03 0 5,890
31 -> 12 0,05 0,01 0.03 0,01 5,924
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Table XII.
Heli il in , 3203 A (5 —> 3).

371

New components (Perturbing field 300 Volt cM)

Component Transition R" 1Ï"2 slR'-) s(R"2) Wave length

05 -> 03 05; 3 -> 03; 3 .26 0 1.32 .ool 5 3203.167 A
Par. 05; 2 03; 2 .46 .ooo43

1 05; 1 03; 1 .60 .00111

05; 4 -> 03; 3 .19 0
05; 3 —> 03; 2 .26 ,ooo55

Perp. 05; 2 -> 03; 1 .26 .ooo55 0,86 .ool 2
05; 2 03; 3 .05 0
05; 1 03; 2 .10 .ooo09

14 -► 12 Par. 14; 2 — 12; 2 .47 0 1,20 ,ooO8 3,111
14;1 -> 12;1 .7 3 .ooo77
14; 3 — 12; 2 .28 0

Perp. 14; 2 - 12; 1 .35 .ooo58 0,93 .ooO6
. 14; 1 -> 12; 2 .30 0

23 -> 21 Par. 23; 1 21; 1 .36 0 0,36 0 2,941
Perp. 23; 2 -> 21; 1 .18 0 0,18 0

23 03 23; 3 -> 03; 3 .04 0 3,1 77
Par. 23; 2 03; 2 .19 0 0.54 0

23;1 03; 1 .31 0
33; 3 -» 03; 2 0 0

Perp. 23 ; 2 -> 03 ; 1 .17 0
23; 2 -» 03: 3 .04 0 0,30 0
23; 1 03; o .10 0

32 —> 12 Par. ' 32 ; 2 -*12 ; 2
I 32; 1 -> 12; 1

.02

.07
.oooO9
.0008O 0,09 .ooO9 3,131

Perp. 32; 27—* 11; 1 0 .ooo54 0,01 .oo05
32; 1 12; 2 .01 0

41 21 Par 41;1 -> 21; 1 .005 .ooo03 0,005 .OoOO 2,992

41 03 Par. 41 ; 1 03; 1 0 0 0 0 3,228
Perp. 41 ; 1 -> 03;2 0

.
0 0 0

Original components
.

Ä"2 2Imv2R'2 Wave length

14 -> 03 .049 0 .132 0 3203,171 A
23 12 .049 .052 .097 .069 3,118
32 -+ 21 .036 .031 .047 .021 2,953
32 -> 03 .002 0 .003 0 3.190
41 -> 12 .006 .000 .004 .001 3,169
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Table XIII.
Hydrogen, Ha, 6562 À (3 —» 2).

New components (Perturbing field 300 V°lt/CM)

Component Transitions Z?-’ 2?"2 s (Ä"2) Wave length

03 -> 11 Par. 03; 1 —> 11; 1 0 0 o 0 6562,70 Å

Perp. 03; 2 —» 11 ; 1 0 0 0 0

12 02 Par. / 12; 2-.02; 2
I 12; 1 —► 02; 1

0,91
3,54

0
0 4,4 0

2,86

Perp./12’2-02’1 * 111
1 12; 1 -» 02; 2

0
0,32

0
0

0,8 0

21 11 Par. 21; 1 -> 11; 1 0,27 .oo45 0,3 ,oo5 2,75

Origin al components 7Ï”-’ fí"2 2ls n2R'2. a/3n'a'fí"6 Wave length

03 -> 02 1,00 1,00 2,00 1,33 6562,84 Å
12 -> 11 0,50 0,35 0,67 0,23 2,72
21 02 0,04 0 0,03 0 2,89

1) Since at the time of Paschen’s experiments a spectrogram of the fine structure would rather 
be considered as showing the normal effect when the maximum number of components appeared, no 
special attention seems to have been paid to an examination of the experimental conditions under 
which the smallest number of components appeared. In order to test the predictions of Bohr’s theory 
the latter point has been examined by Dr. H. M. Hansen at the Copenhagen physical laboratory. Although
this investigation has not yet been completed, some preliminary photographs of the line 4686 Å, taken 
by application of a low voltage to the vacuum tube, indicate that the components (31—»21) and 
(31 —> 03), if present at all, were at any rate less intense compared with the main components I, II and
111 than in the spectrograms published by Paschen

steady voltage is applied to the vacuum tube; the other to the “spark discharge 
image” (“Funkenbild”), which appears when the tube is exposed to an interrupted 
spark discharge. The heights and breadths of the hatched extensions representing 
the components are chosen so as to represent approximately the observed inten
sity and degree of diffusion. For the sake of the following discussion the observed 
components are, as shown in the figure, characterised by the ciphers I, II, .. ., VII.

When comparing the observations with the theory it will in the first place 
be seen that, although the spectrogram corresponding to the continuous discharge 
undoubtedly approaches more than the spectrogram obtained by the application of 
an interrupted discharge to the aspect of the theoretical fine structure of the spec
tral line of the undisturbed atom, both images given by Paschen differ essentially 
from it, because the components corresponding to (31 *21) and (31 03) are pre
sent on both of them.J)

I'he strongest three components I, II and III in Paschen’s continuous discharge 
image correspond, in agreement with the theory, to the three transitions (04 03), 
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(13—> 12), (22 — 21) in which the angular momentum of the electron round the 
nucleus decreases by k‘2-. From table XI the first of these components would be 
expected to be stronger than the second and the second again stronger than the 
third. Paschen, however, characterises their intensities by the numbers 7, 7,5, 3 
respectively i. e. he linds the component (04—>03) a little weaker than (13 —> 12). 
This seems to indicate again that the a-priori probability of spontaneous transition 
between two circular orbits in the region of small n’s is less than it would be 
expected from the numbers obtained by the method of estimating intensities by 
means of the values of the amplitudes of the harmonic vibrations occurring in the 
motion of the atom, these values giving, in a singular case as this, an exaggerated 
picture of the intensities (compare page 60). In Paschen’s spark discharge image 
the three components in question also appear, but they have become more diffuse, 
and I has become stronger than II, the relative intensities being now characterised 
by 7, 6, 0,5 respectively. This might obtain anexplanation if we assume that, in the 
case of a spark discharge, perturbing electric fields have been acting on the atoms 
of such intensity that the new components (22 -* 12) and (13-*03) have appeared 
with considerable intensity. In fact, these components lie so near to (04-> 03) that 
they may be assumed together with the latter component to contribute to the intensity 
of the component 1 observed by Paschen, while on the other hand the new compo
nent (04->12) which lies very near to (13—* 12) will, as seen from the table, only 
possess a very small intensity in comparison with (22-* 12) and (1303), and 
cannot therefore be expected to contribute essentially to the intensity of component 
II. In this connection it must, however, be remarked that the amplitudes of the 
harmonic vibrations of frequencies which correspond to the original components, 
in general, owing to the influence of the perturbing field, will have changed by small 
amounts proportional to F2/o2, and that as a consequence of this we may be prepared 
to find that the intensities of these components themselves have varied by amounts 
which are of the same order of magnitude as the intensities of the new components.

The weak original components (22-* 03) and (31^12) which correspond to 
transitions for which the angular momentum increases by and the theoretical 
distance between which would be equal to 0,034 A, are in the continuous discharge 
spectrogram, as well as in the spark discharge spectrogram, recorded by Paschen 
as a single line, which in figure 10 is indicated by IV.

Moreover Paschen has observed separately the new components (31~*03), 
(31 —* 21) and (13-* 21), indicated in the figure by V, VI and VII respectively. In 
table XI the values of s (/?'-) and s(R"2) corresponding to (31-*03) are equal to 
zero but, as pointed out in the analogous case in the Stark effect (see page 58, 
compare also page 99), it is not permissible from this to draw the conclusion that the 
a-priori probability for this transition is zero. Also the component (31 -* 21) appears 
both on Paschen’s continuous discharge image and spark discharge image and is 
stronger than (31-* 03), in agreement with the table. Finally, as regards (13~*21), no 
corresponding component is observed in the continuous discharge image, but on the
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other hand a very strong component has been observed in the spark discharge image, 
which lies in the middle between the theoretical positions of (13-* 21) and (04-* 21). 
On the present theory it seems necessary to assume that the component VII corre
sponds to (13-*21) only. In fact, the intensity of the component (04^21) should 
be expected to be connected with the value of the amplitude of the vibration of 
frequency (—2w, |-3û>2) in the motion of the electron, but under the influence of 
a perturbing homogeneous electric field such frequencies do not in first approxima
tion appear in the motion of the electron in the atom. The component in question 
is much stronger than the other two separate new components (31*21) and 
(31->03), in agreement with the table according to which (13-^21) is the strongest 
new component after (13 —► 03). On the other hand it remains a remarkable fact 
that the new component IV appears so much stronger than the original component 
III which lies quite near to it, while it does not appear at all in the continuous 
discharge spectrogram. Apart from this difficulty, which perhaps will disappear 
when further experimental data become available, the observations on the fine 
structure of 4686 A seem to allow of a complete theoretical interpretation if the 
effect of the presence of electric fields in the vacuum tube is taken into account 
in the way described in the preceding. As regards the intensities of the perturbing 
electric forces in question it is seen from the table, which gives the values of the 
relative amplitudes for a force of 300 Volt/cM, that forces of 500 à 1000 V°lt/CM would 
be sufficient to give rise to new components of considerable intensities which are 
of the same order of magnitude as those of the new components in the spark 
discharge image, while in case of the continuous discharge image these forces may 
have been of the order 100 à 300 Volt/CM. *)

Let us next proceed to the helium line 3203 A (5 ~* 3), where the discussion 
of the observed fine structure is quite analogous to that for 4686 A. In fig. 11 we 
have given a scheme of the theoretical fine structure and of the components ob
served by Pasciien in the continuous discharge spectrogram. The original compo
nents are again represented by drawn lines, the new components by dotted lines. 
The lengths of the lines representing the original and the new components are 
taken proportional to the sums of the quantities appearing in the 5th and 6th 
columns of table XII, which is arranged in the same way as Lable XI. The lengths 
of the new components in the figure correspond Io a perturbing field of 96 Volt CM. 
Owing to the factor in formula (126), the values for the relative amplitudes in 
the initial states, corresponding to the new components, are, for same values of F, 
several times larger than for the new components in 4686 A. This seems to offer an 
explanation of the fact, mentioned by Paschen, that in the spark discharge spectro
gram of the fine structure under consideration no sharp components could be

’) In the case of one of the photographs published by Paschen, which is taken under such condi
tions that the electric current had to pass a long sparking length, the electric forces have obviously 
been very large since the two strongest components could not be observed separately but appeared 
as a broad diffuse line.
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observed, but that only two broad diffuse lines were visible (with their centres of 
gravity lying at 3203,140 A and 3202,964 A), because if the electric forces present 
in the luminous gas are of the same order of magnitude as in the case of the spark 
discharge image of 4686 A, these forces must be expected to be strong enough to 
destroy the details of the fine structure to a large degree. In the continuous discharge 
spectrogram the strongest three components I, II, III correspond to the original 
components (14->03), (23-> 12) and (32 21), and their intensities may according to
Paschen be characterised by the numbers 7, 8, 4 respectively, in general agreement 
with the values of n'2R'2 and n”R"'2 for these components given in table X. It must 
be expected, however, that component I contains not only the light of the original 
component (14 —* 03) but also that of the original component (41 —* 12) (and perhaps 
(32^*03)) and of the new components (05-> 03) and (23~>03); that II represents, 
besides (23-* 12), also (14 -* 12) and perhaps (32-* 12), and finally that III represents, 
besides (32-* 21), also the new component (23 ~* 21). The two other weak com
ponents which Paschen observes in the continuous discharge image correspond to 
the two only new components which could be expected to appear separately, viz. 
(41 -* 03) and (41 -* 21).

The helium lines (6-> 3), (7-* 3), (8 -> 3) and (9^3) have also been examined 
by Paschen. For the first three of these it was found possible to detect three com
ponents I, II, III which must be assumed to correspond to transitions to the final 
states (03), (12) and (21) respectively and the positions of which coincide to a 
high degree of approximation with those of the original components (n'—~ 4, 4-* 0,3), 
(n'—3, 3 -> 1, 2) and (n'—2, 2^2, 1). In agreement with the present theory, the 
intensity of I was smaller than that of II but a deal larger than that of III. The 
energy differences between the different initial states were so small that separate 
new components could not be observed, but the perturbing influence of electric 
fields in the vacuum tube is no doubt considerable for these lines.

Paschen has further examined the helium lines (6 ~* 4), (7 ~* 4), ... (12-*4). 
The first of these lines, 6560 A, appeared only very weak in the spectrograms and 
a fine structure could not be observed. An estimate for the intensities of the original 
components of this line has been given in table X. All the other lines showed two 
diffuse components the strongest of which in some spectrograms again showed a 
resolution in two components. Fig. 12 contains a scheme of the theoretical and of 
the observed fine structure of the line 5411,2 A (7 -* 4). For simplicity only the 
original components are drawn, their intensities as estimated from table X being 
indicated by the lengths of the lines. The arrows indicate the centres of gravity of 
the components observed by Paschen. The two small arrows on the right indicate 
the positions of the centres of gravity of the two components in which, in one of 
Paschen’s spectrograms, the stronger component was resolved. It will be seen that 
the observations are in agreement with the theory. The existence of separate new 
components, on account of the small frequency differences between the different 
possible initial* states, could not be observed. As it may be seen from Paschen’s 
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paper the theory agrees with the observations also in the case of the fine structure of 
the other lines (8 4), (9 -> 4), ... of the series in question; the stronger of the
observed components may be ascribed to transitions to the final states (04), (13), (22), 
the weaker to transitions to the final state (31). It need hardly be remarked that 
it must be expected for all the lines in question that the details of the theoretical 
fine structure are influenced and disturbed to a high degree by the presence of 
electric fields in the vacuum tube. In fact, as seen from the observations on 4686 A, 
the intensity of these fields seems, in case a continuous voltage was applied to the 
vacuum tube, to have been of the order of magnitude of 100 à 300 Volt/CM, but fields 
of this intensity will, as may be seen for instance from the formulae (126), be large 
enough to change the character of the stationary states corresponding to n = 6, 7, 8, . . . 
almost completely. That it has been possible to observe a fine structure at all is, 
just as in case of the fine structure of the lines (6~»3), (7 —> 3), . .., due to the fact 
that the final states involved in the transitions (n"=3, n"=4) are yet stable against 
the perturbing influence of electric fields of this order of magnitude.

Before leaving the comparison with the observations on the fine structure of 
the helium lines it may be of interest to emphasize that a further test of the 
theory maybe obtained by an examination of a possible characteristic polarisation 
of these components with respect to the direction of the electric field in the dis
charge. Thus from the tables XI, XII and XIII it will be seen that, if the phenome
non is viewed in a direction perpendicular to the external electric force, we must 
expect that all the new components will contain a greater percentage of light 
polarised parallel to the electric force than of light polarised perpendicular to this 
direction, and especially that the component (31 ->21) of the line 4686 A and the 
component (41 -> 21) of the line 3203 A should be completely polarised in the 
direction of the electric field. The question of the polarisation of the fine structure 
components seems not to have been examined by Paschen, and it also appears 
doubtful whether such a polarisation would have been detectable at all with the 
experimental arrangement used by this investigator, since the electric field may 
have quite different directions at the different points in the luminous gas which 
contribute to the formation of the spectroscopical image.

We shall now briefly consider the hydrogen lines (N = 1) the fine struc
ture of which has also been discussed in Paschen’s paper. For this element we 
must expect that, owing to the circumstance that the denominator N5 appearing in 
formula (126) is only equal to 1, the effect of small electric fields in the vacuum 
tube is yet much larger than for the helium lines discussed in the preceding. This 
is in agreement with the well known experimental fact that in the case of the Balmer 
series it is very difficult to obtain spectrograms which show a distinct fine structure. 
In table XIII we have, as mentioned, given an estimate for the intensities of the 
original and of the new components in case of Ha (3 -> 2), corresponding to an 
intensity of the electric field of 300 voit/cM. The values for s (/?'“) in this table are 
so large that, already for a field of 150 Voh/'cM, the influence of tlie field on the
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initial state (n' = 3) can hardly any more be considered as a perturbation of the fine 
structure, but may rather be described as an effect of the same order of magnitude 
as the influence of the relativity modifications. On the other hand, as seen from the 
value of R"* 2 corresponding to the transition (21 ; 1 -> 11 ; 1), the motion in the final states 
is yet rather stable against perturbing forces of the order of magnitude in question. 
Owing to this, as well as to the smallness of the frequency differences involved in the 
theoretical fine structure, it has therefore only been possible to observe a doublet 
consisting of two diffuse components. In fig. 13 the theoretical fine structure has 
been schematically represented in the same way as in the figures 10 and 11. The 
lengths of the new components correspond to a perturbing field of 100 Volt/CM. The 
arrows indicate the position of the centres of gravity of the components observed 
by Paschen. The theoretical distance between the two strong original components 
(03-^02) and (12->11) is 0,142 Å, while the width of the observed doublet was 
about 0,12 A.1) The reason for this discrepancy must mainly be sought in the 
appearance of the new component (21 ~> 11), as well as in the splitting up of the 
components (03-> 02) and (12-^11) into several components under the influence of 
the perturbing forces.2) This point will be discussed more closely in the later papel
ón the transmutation of the fine structure into the Stark effect, referred to above, 
but it has been mentioned here in order to draw attention to the difficulties which 
are involved in an exact determination of the constant K for hydrogen, appearing 
in formula (120), from measurements on the wave length of the hydrogen lines. As 
regards the measurements of the relative intensities of the components of the Ht/ 
doublet, Meissner finds that the relative intensities of the component of larger and 
of that of shorter wave length may be represented by the numbers 7 and 5 respec
tively.3) This seems again to indicate that the a-priori probability for a transition 
between two circular orbits (03-> 02) is less than would be expected from the estimate 
afforded by table IX, which is based on the method discussed in § 5. As regards 
the other lines in the Balmer series of hydrogen, . . ., doublets the width of

’) See Paschen, loe. cit. p. 933, compare also Sommerfeld, Ann. d. Phys. LI, p. 68 (1916).
2) From the formula for J > given in note 3 on page 77 it is simply seen that in first approxima

tion all components in which (03 —> 02) will split up under the influence of an electric field are dis
placed in the direction of shorter wave length, while those of (12—> 11) are displaced in the direction of 
longer wave length.

3) See F. Paschen, loe. cit. p. 933.

which is of the right order of magnitude have been observed, but these lines are dis
turbed to a yet higher degree by small electric fields in the vacuum tube than Ha. 
In general it will be seen that, when different investigators have found different 
values for the width of the doublet of one and the same hydrogen line, this may 
be due to the presence of perturbing fields of different intensities in the luminous 
gas. Especially, when certain authors find that the doublets of the higher members 
of the Balmer series are smaller than should be expected from Sommerfeld’s theory 
of the fine structure of the spectral lines emitted by the undisturbed hydrogen 



378 94

atom1), this does not constitute a difficulty for the theory but it just what should be 
expected according to (he above considerations of the effect of perturbing fields on 
the fine structure.

§ 8. The effect of a magnetic field on the fine structure 
of the hydrogen lines.

In this chapter we shall briefly consider certain points which present them
selves in connection with the application of the quantum theory to the problem ol 
the effect of a magnetic field on the fine structure of the hydrogen 
lines, and from which it is possible to draw conclusions which are ol interest in 
connection with the problems discussed in the preceding chapters.

The problem of the influence of a homogeneous magnetic field on the hydrogen 
atom may be treated in a similar way as the influence of an electric field on the 
simplified hydrogen atom, since the equations of motion of the electron also in the 
presence of the magnetic field may be written in the canonical form and since, il 
we look apart from small quantities proportional to the square of the intensity ol 
the magnetic force, a solution of these equations may be obtained by separation ol 
variables in the Hamilton-Jacobi partial differential equation if polar coordinates 
are introduced.2) The motion in the stationary states will then be fixed by three 
conditions of the type (99). The results obtained in this way may be very simply 
interpreted. In fact, as mentioned in § 2, the mechanical motion ol the electron 
in the hydrogen atom in the presence of a homogeneous magnetic field differs from 
a mechanical motion in the absence of this field only by a slow and uniform super
posed rotation round an axis through the nucleus parallel to the magnetic force, the 
frequency o# of which is given by (40), and it is simply shown that the stationary 
states of the system in the presence of the field are obtained by superposing a 
rotation of this kind on a stationary motion of the atom without field which, be
sides satisfying the conditions (117) characterising the stationary states of the un
disturbed atom, satisfies the further condition that the value of the angular momen
tum of the electron round the axis is equal to an entire multiple of ^/2-'!). Denoting 
this value by nft/2îr, the stationary states may, in analogy with the notation used in 
the preceding chapter, be characterised by the symbol (np n2; it). Further the different 
possible stationary states corresponding to different combinations of rtv n2> n (n2)>il) 
will again be a-priori equally probable, but just as in the case of the perturbed 
system treated in the preceding chapter, we must assume that neither n2 nor it can 
assume the value zero.

') See T. R. Merton and J. W. Nicholson, Trans. Roy. Soc. A 555 (1918).
-) Compare A. Sommerfeld, Phys. Zeitschr. XVII, p. 491 (1916), and especially P. Debye, ibid. p. 507. 
') Compare Bohr, loc. cil. Part. II, p. 82.
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Proceeding to discuss the effect of the magnetic field on the spectrum we see 
in the first place that the energy in a given stationary state will differ from the 
energy in the corresponding stationary state of the undisturbed atom, which was 
given by (118), only by a small term proportional to the intensity H of the magnetic 
field, which represents the effect of the superposed rotation on the kinetic energy of the 

. . . ellsystem. This term is simply shown to be equal to 4 \\1i0h = ±nh where the
upper or the lower sign holds according to whether the direction of the superposed 
rotation is the same as or the opposite of that of the revolution of the electron 
round the axis respectively. Considering a transition (zz',, zz', ; it'-» zz", zz"; n") between 
the initial state (zz'L, ri2; it') and the final state (zz", n”; n") we see therefore that the 
frequency of the emitted radiation will be given by

----- V() + ^1 4- H- 4j ’ (128)

where y0, iq and >2 have the same signification as in (120), (121) and (122), while
iq is given by

^3 = i (if-ii"). (129)3 — 47TZHCV '

As shown by Sommerfeld and Debye the formulae (128) and (129) offer an 
interpretation, as regards the frequencies, of the effect of a magnetic field on the 
hydrogen lines, since, putting it' — n" = 0 and it' — n" — i 1, and disregarding the 
terms jq and v2, which refer to the fine structure, we obtain the frequencies of 
the three components in which the hydrogen lines are split up, these lines showing 
a normal Zeeman effect. Further Bohr showed that it is possible, on the basis of 
the formal connection between the quantum theory of line spectra and the ordinary 
theory of radiation, to obtain a natural interpretation of the characteristic polarisa
tion of the observed three components, as well as of the fact that no further com
ponents appear; the theory of the Zeeman effect thereby obtaining a remarkable 
formal analogy with the theory originally devised by Lorentz on the basis of the 
classical theory of electrodynamics.

From the considerations in § 2 it is seen that in the presence of a homo
geneous magnetic field the motion of the electron in the hydrogen atom may 
be resolved in a number of linear harmonic vibrations of frequencies 
parallel to the direction of the field, and in a number of circular harmonic rota
tions of frequencies 4 (o2 -4- Oh perpendicular to this direction. Now it is easily 
shown that the frequency emitted during a transition (zz't, zz*; n'-» zz", zz"; n") will be 
equal to the mean value of the frequency (n't— zz")<zq -4 (n'2—n”)co2 4^ (n'— n")Oh, 
taken over the multitude of mechanically possible states, lying between the initial 
state and the final state, which are characterized by nk = n'k— nk), (/c=l, 2) 
and n = n"x(n'—n"), x assuming all values between 0 and 1. With reference to 
the formal connection between the quantum theory and the ordinary theory of 
radiation we may therefore conclude that only such transitions will be possible 
lor which n remains unchanged, the emitted radiation being polarised parallel to 
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the axis, and transitions for which n decreases or increases by one unit, the emitted 
radiation being circularly polarised perpendicular to the axis, and that for both 
types of transitions n2 must either decrease or increase by one unit. From this 
it follows directly with reference to (128) and (129) that, as mentioned in Bohr’s 
paper, the effect of the magnetic field on the fine structure of the hydrogen lines 
will consist in the splitting up of every fine structure component into one undis
placed component polarised parallel to the direction of the field and two symme- 
tncal components at a distance 4_ — from the undisplaced component, which 
appear as circularly polarised in opposite directions when viewed in the direction 
of the field and as linearly polarised perpendicular to the field when viewed in a 
direction perpendicular to the field.

As regards the intensities of these components we may in the first place 
obviously conclude that the latter two components are of equal intensity, since, if 
the effect is viewed in the direction of the field, they must not show characteristic 
polarisation when taken together. Further when viewed in a direction perpendicular 
to the field the intensity of each of the perpendicular components must be equal 
to half the intensity of the parallel undisplaced component, since we must equally 
assume that, when viewed in this direction, the ensemble of components into 
which the unpolarised fine structure component is split up does not exhibit char
acteristic polarisation. The theoretical effect of a magnetic field on the fine struc
ture of the hydrogen lines may therefore be described as the splitting up of every 
fine structure component into a Lorentz triplet.

We have thus met with an illustrative application of the considerations on 
page 49 at the end of § 5, and it is seen that the problem of the Zeeman effect of 
the fine structure of the hydrogen lines does not involve a new intensity problem if 
the intensity distribution in the undisturbed fine structure is known. It will there
fore be of special interest in this case to compare the relative intensities of the 
Zeeman effect components with the amplitudes of the harmonic vibrations occurring 
in the states of the perturbed motion, since, owing to the circumstance that we have 
beforehand some information about these intensities, such a comparison will give us 
valuable information about the way in which the estimate of the relative intensities 
of spectral components, based on the values of these amplitudes, may be expected 
to fail if the numbers characterising the stationary states are small. For this pur
pose we have in the case of two special lines, viz. the helium line 4686x4 (4^3) 
and the hydrogen line Ha (6562 A), (3 —* 2), calculated the squares of the relative 
amplitudes of the corresponding harmonic vibrations which occur in the initial 
states and in the final states involved in the different transitions giving rise to the 
different components of the Zeeman effect of the fine structure. The result of 
these calculations will be found in tables XIV and XV.

The first column contains the symbols (z?1, n2 n'¿) characterising the 
transitions corresponding to the fine structure components of the undisturbed 
hydrogen atom.
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The second column contains the symbols (/ip/i'; n") characterising
the transitions which may take place between two stationary states of the atom 
perturbed by the magnetic field. 'Plie transitions corresponding to the same fine 
structure component which give rise to radiation of similar polarisation are collected 
in brackets, the character of the polarisation being indicated by Par. or Perp.

'Phe third and fourth columns contain the squares of the relative amplitudes, 
given by (42), of the vibrations of frequency (n\—n'')co1 (/?', — 7J2)íw2 (if — n") D«
= (n\—n")id, 4-(n'o—if— n”— n")«>2 + (if — n")io3 occurring in the initial state and 
in the final state of the transition under consideration respectively. These relative 
amplitudes are calculated by means of the expressions

R (t — 1 <zq id2)

(r— 1 <d, —(i>$) 1 {(1 + «■) -£')Jr+1(re)},

' Tf ' <(» - -') A-i («) - (1+O •/,+.(«)>•

(130)

where

(r 4- 1 ,---2 id2 ¡ - id3)

The fifth and sixth columns contain the sums s(Z?'2) and s(jR''2) of the squares 
of the relative amplitudes belonging to the transitions corresponding to a same fine 
structure component which give rise to radiations of similar polarisation.

The seventh and eighth columns contain the values of if,R'2 and n"R'r'2, appear
ing in tables IX and X, multiplied by the factor 2 :i. These numbers, as mentioned 
on page 84, afford an estimate for the relative intensities of the fine structure com
ponents which is directly comparable with the estimate a Horded by the numbers 
in the fifth and sixth columns.

When considering these tables it will in the first place be observed that for a 
given fine structure component the quantities s(fí2) Par. and s(R2) Perp., which 
correspond to the intensity of the undisplaced parallel component and to twice the 
intensity of one of the outer components of the Lorentz triplet respectively, are not 
equal to each other, although, as mentioned in the above, these two intensities are the 
same. Moreover the quantities s(R'2') Par. and s(R'2) Per}), differ both from the value 
of the quantity 2¿n.,R'2 appearing in the seventh and eighth columns, which corres- 
sponds to the same intensity. From the connection with ordinary electrodynamics 
in the region of large n’s we know that for a fine structure component (njC nfrí') 
for which the n’s are large numbers these three quantities would tend to coincide, 
but in the case of the lines considered in the tables they show considerable differences. 
If we especially would consider the hydrogen line (2 -> 1), which corresponds to the 
smallest possible values for n' and n", these differences become still more marked. 
This line will not show a tine structure because in the undisturbed atom only the

I). K. I). Vidensk. Selsk. Skr., naturvidensk. og matliem. Afd., 8. Række, III. 3. 49
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Table XIV.
H c 1 i u ni, 4686 A (4 —» 3).

0,88
1,20

1,09 0,78

22 0,160,47

0

0,0100,034

Perp.

0,27
0,35

0,026

0
0,24

13 -> 12

Component
 i

I
Par.

22 03

Par.

Transition R - R'2 siR'2) (‘?/3 Zlg/i'-) P/a n%ir

Í 04; 3 — 03; 3 0,44 0
04; 2 03; 2 0.75 0,56 2,13 1,45

I 04; 1 -» 03; 1 0,94 0,89
04; 4 -> 03; 3 1,00 1,00 2,66 2,00
04; 3 -> 03; 2 0,77 0,69
04; 2 -> 03; 1 0,56 0,44 2,16
04; 2 -> 03; 3 0,06 0
04; 1 -► 03; 2 0,14 0,03

Perp.

I 13; 2 -> 12; 2 0,33 0
1 13; 1 —> 12; 1 0,53 0,38
i 13; 3 -» 12; 2 0,60 0,50

13; 2 12; 1 0,42 0,28
( 13; 1 -> 12; 2 0,07 0

22; 1 -> 21; 1 0,27 0
22; 2 -> 21; 1 0,35 0,24

31 12

Par f 22; 2 -> 03; 2 0 0 0,015 0
I 22; 1 -> 03; 1 0,015 0
( 22; 2 -> 03; 1 0 0

Perp. 22; 2 -> 03; 3 0,019 0 0,030 0
1 22; 1 -> 03; 2 0,011 0

Par. 31; 1 -> 12; 1 0 0,006 0 0,006
Perp. 31; 1 > 12; 2 0,051 0,008 0,051 0,008

Table XV.
H y d r o g e n, 6562 À, Ha 3 —> 2 .
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transition (0201) will be possible. In the presence of a magnetic field it will split 
up into a normal Lorentz triplet, where the undisplaced parallel component corres
ponds to the transition (02; l->01; 1) and each of the outer components to the tran
sition (02; 2 —> 01 ; 1). The values of R'2 and jR"2 corresponding to the former transition 
are easily seen to be equal to :i/t and 0 respectively, while those corresponding to 
the latter transition are both equal to 1.

In this connection it may be of interest to notice that, tor all the fine structure 
components considered, the value of s(R2) Perp, is larger than that of s(R2) Par., 
and that in the case of the components (04->03), (03 >02) and especially (02 -> 01) 
this seems to be due mainly to the large values of R - and R"2 (R'2 = R"2 = 1) cor
responding to transitions between two stationary states in both of which the orbit of 
the electron is circular. This is in agreement with the analogous facts mentioned in 
the discussion of the theory of the Stark effect and of the fine structure, which 
seemed to indicate the general result that the estimate of the intensities of 
spectral lines by means of the values of th e amplitudes of the corres
ponding harmonic vibrations in the states implied in the transitions 
assumes, in the region of small n’s, an exaggerate character as soon 
as, owing to the singular character of tlie motion in these states, the 
values of these amplitudes become either especially large (e. g. transition 
from circular orbit to circular orbit) or especially small (e. g. transition from 
non-circular orbit to circular orbit).

An interesting remark may further he made in connection with the Zeeman 
effect of the component (21 -> 02) in Ha. This component will, under the influence 
of the magnetic field, be split up into an undisplaced parallel component correspond
ing to (21 ; 1 -> 02; 1) and two perpendicular components corresponding to (21 ; 1 -* 02; 2) 
the intensity of each of which is equal to half the intensity of the undisplaced 
component. The values of R'2 and R"2 corresponding to (21; 1 —* 02 ; 1) are, however, 
both equal to zero, so that we are able to conclude by purely theoretical argument 
that the a-priori probability for a transition, for which the ampli
tudes of the harmonic vibrations of corresponding frequency occur
ring in the motion in the initial slate and in the final slate are both 
equal to zero, will not necessarily he equal to zero. In the discussion ol 
the Stark effect and of the influence on the fine structure due io a small electric 
field we have already met with analogous transitions, and just as in those cases, 
we have in the present case that the amplitude of the corresponding harmonic 
vibration is different from zero in the mechanically possible states lying between 
the initial state and final state, and which here are characterised by (2x, 2— X; 1), 
where 0 < x < 1.

Especially when considering transitions of the type just discussed the question 
arises whether the estimate of the intensities of the components in which a spectral 
line is split up would not be essentially improved by comparing these intensities 
with some kind of mean value of the square of the corresponding amplitude taken 
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over the states lying between the initial state and the final state. Although, as 
mentioned in § 5 (compare page 63), such a calculation may perhaps permit of 
accounting in more detail for the observed intensities, a consideration of the Zeeman 
effect of the hydrogen lines can, however, be used to show that no simple type 
of mean value will be able to give an exact measure for the relative 
intensities. Let us thus especially consider the hydrogen line (2*1), which in a 
magnetic field will show the components (02; 1 —>01; 1) and (02; 2 -> 01 ; 1). In the
states characterised by (0,1 4- x; 1) the square of the relative amplitude of the harmonic
vibration of frequency co.2 is, as seen from (130), given by 1 — while in the
states characterised by (0, 1 -j- z; 1 : z) the square of the relative amplitude of the
harmonic vibration of frequency id., is equal to 1. Now it is beforehand clear that any 
simple type of mean value of 1 —qTpzp’ ta^en over ah values of Å between 0 
and 1, never can be equal to 1, which number obviously represents any such mean 
value corresponding to the second transition. Since nevertheless the corresponding 
intensities are the same, we are therefore directly led to the above conclusion. If, for 
instance, we would use the logarithmic mean value defined by (169) which, as men
tioned on page 46, for several reasons offers itself naturally for an estimate of the 
intensities, we would for the first transition, as it may be shown by a simple cal- 
culation, get the value g , while for the second transition we would get 1. Even 
if we may be justified in expecting that in general it will be possible by means of 
the mean value in question to obtain a closer estimate of the relative intensities of 
spectral lines, we see from this example that, in case the n’s are small, the errors 
involved in such an estimate may become considerable in especially chosen un
favourable cases.

In concluding this paper it may be useful once more to emphasize the in
complete and preliminary character of the underlying considerations. Nevertheless 
the results obtained as regards the applications to the Stark effect and to the fine 
structure of the hydrogen lines must be considered as affording a general support 
of Bohr’s fundamental hypothesis of Lhe connection between the intensity of spec
tral lines and the amplitudes of the harmonic vibrations into which the motion of 
the electron in the atom may be resolved, the more so because it seemed possible 
to obtain a natural understanding of certain marked deviations of the observed 
intensities from the preliminary theoretical estimate of the intensity distribution 
obtained on lhe basis of this hypothesis. It seems therefore justifiable Io conclude 
that Bohr’s considerations offer a sound basis for a further development of lhe 
theory of intensities of spectral lines.
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DESCRIPTION OF PLATES

Plate I and Plate II. Stark effect of hydrogen lines. Fig. 1. 2, 3 and 4. Comparison for 
Ha, Hß, Hy and of theoretical estimate of relative intensities of components with Stark’s obser
vations (see page 55).

Fig. 5. Reproduction of Stark’s photographs of effect of electric field on Hß, Hy. and H$ (see 
page 54).

Fig. 6. Theoretical estimate of effect of electric field on hydrogen line He (see page 63).
Plate III. Stark effect of helium lines. Fig. 7, 8, 9. Theoretical aspect of electric resolution 

of 4686 A, 3203 A, 2733 Å, compared with the rough analysis of this resolution observed by Nyquist 
and by Stark, the observed components being indicated by arrows (see page 64).

In all figures of theoretical estimate of intensities of Stark effect components, components repre
sented by dots mean that the theoretical estimate for the intensity of these components is too small 
to be conveniently represented on the same scale as other components.

Plate IV. Fine structure of hydrogen and helium lines. Fig. 10, 11, 13. Theoretical fine 
structure of helium lines 4686 A and 3203 A, and of hydrogen line Ha, compared with Paschen’s 
observations. Lengths of drawn components proportional to estimate of intensities of components of 
fine structure for undisturbed atom. For the sake of convenience, however, component (04 —> 03) in 
fig. 10 and component (03 —>■ 02) in fig. 13 are represented by lines 2,5 times shorter than that corres
ponding to scale of other components. Dotted lines represent estimates of intensities of new components 
corresponding to electric field of 600 Volt,c^j in fig. 10, of 90 Volt cj^ in fig. 11 and of 100 Volt/Cj^ in 
fig. 13 (see pages 85, 90 and 93).

Fig. 12. Theoretical estimate of intensities of original components of fine structure of helium line 
5411 A, compared with Paschen’s observations (see page 91).

Components represented by small squares in the case of original components and by one dot in 
the case of new components have generally theoretical intensities which are far too small to be con
veniently represented on the scale used.
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